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Abstract 

A growing body of research documents that the size and growth of an industry in a place 
depends on how much related activity is found there. This fact is commonly referred to as the 
“principle of relatedness”. However, there is no consensus on why we observe the principle of 
relatedness, how best to determine which industries are related or how this empirical regularity 
can help inform local industrial policy. We perform a structured search over tens of thousands 
of specifcations to identify robust – in terms of out-of-sample predictions – ways to determine 
how well industries ft the local economies of US cities. To do so, we use data that allow us to 
derive relatedness from observing which industries co-occur in the portfolios of establishments, 
frms, cities and countries. Diferent portfolios yield diferent relatedness matrices, each of 
which help predict the size and growth of local industries. However, our specifcation search not 
only identifes ways to improve the performance of such predictions, but also reveals new facts 
about the principle of relatedness and important trade-ofs between predictive performance 
and interpretability of relatedness patterns. We use these insights to deepen our theoretical 
understanding of what underlies path-dependent development in cities and expand existing 
policy frameworks that rely on inter-industry relatedness analysis. 
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1 Introduction 
The feld of human geography has uncovered a number of striking empirical regularities, such as 
Zipf’s law for city-size distributions (Auerbach, 1913; Zipf, 1946), the law of gravity for social 
interactions (Tinbergen, 1962), Tobler’s frst law of geography for spatial dependence (Tobler, 
1970) and the urban wage and productivity premiums for the exceptional role that cities play in 
the economy (Bettencourt et al., 2007; Rosenthal and Strange, 2004). Recently, a new regularity 
has been proposed: the principle of relatedness (Hidalgo et al., 2018). According to this principle, 
the rate of growth of an activity in a location can be predicted from the prevalence of related 
activities in that same location. The principle of relatedness has not only received ample attention 
in scholarly work, but also plays an important role in economic policy frameworks that provide 
the basis for large-scale place-based development programs (Balland et al., 2019; Boschma et al., 
2022; Hidalgo, 2022; Rigby et al., 2022), such as the EU’s smart specialization policy (Foray et al., 
2009). However, important aspects of the principle of relatedness remain poorly understood. First, 
when researchers examine the principle of relatedness, they face a large number of ad hoc choices 
for how to construct and then use relatedness measures. Second, we know little about when and why 
we observe the principle of relatedness. Third, most existing policy frameworks that leverage the 
principle of relatedness do not incorporate this methodological and conceptual uncertainty in their 
policy recommendations. In this paper, we perform a structured search over tens of thousands of 
specifcations of models that aim at quantifying the strength of the principle of relatedness. Doing 
so, we (1) provide practical guidance for empirical research, (2) uncover a number of substantive 
insights into the principle of relatedness and the forces giving rise to it; and (3) complement existing 
policy frameworks by highlighting existing blind spots and proposing an alternative way to use the 
principle of relatedness in policy that focuses on the identifcation, not of growth opportunities, but 
of developmental bottlenecks. 

The principle of relatedness traces its intellectual roots to debates on how local economies 
reinvent themselves (e.g., Glaeser, 2005; Grabher, 1993; Jacobs, 1969; Martin and Sunley, 2006). 
For cities to stay relevant in a world where technologies and competitive forces constantly change, 
their economies need to fnd new growth paths. In this context, Jacobs (1969) diferentiated between 
economic growth and economic development. The former refers to increases in efciency: as cities 
become better at utilizing their existing resources, their productivity grows. The latter refers to 
economic renewal and diversifcation. According to Jacobs, cities that only raise their efciency risk 
deep crises when technological paradigms change or competitive forces shift. Canonical examples 
can be found in the developmental histories of Detroit in the U.S., Manchester in the U.K. and the 
Ruhr area in Germany. The lack of renewal in such regions would later give rise to an extensive 
literature on path dependence and regional lock-in (e.g. Grabher, 1993; Martin and Sunley, 2006). 

An important conclusion of this research is that, to avoid decline, the successful regions of past 
epochs need to diversify into new activities. However, such new growth paths do not arise out of 
thin air. Instead, as Jacobs put it, cities grow by “adding new work to old” (Jacobs, 1969): new 
economic activities are often related to what a city already knows how to do. 

Although the idea that local economies develop by branching into activities related to their 
current strengths (e.g. Frenken and Boschma, 2007) has immediate intuitive appeal, empirically 
validating this hypothesis initially ran into a serious obstacle: how do we decide which activities 
are related? It would take several decades before this issue had been resolved and Jacobs’ claims 
backed by quantitative evidence. 
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A breakthrough emerged with the insight that important information can be gained from studying 
the portfolios of activities in which economic entities choose to be active. Accordingly, certain 
combinations of economic activities give rise to economies of scope: there are advantages to engage 
in them simultaneously. When myriad economic agents make micro-level portfolio decisions aimed 
at exploiting these economies of scope, such advantages leave a trace in the activity mix of economic 
entities. In other words, relatedness reveals itself in the tendency of activities to co-occur in 
productive portfolios.1 Exploiting this insight allowed accumulating evidence in support of Jacobs’ 
claims across a wide variety of datasets and contexts, successfully connecting the growth of an 
industry (Delgado et al., 2014; Essletzbichler, 2012; Florida et al., 2012; Nefke et al., 2011; Porter, 
2003), export category (Zhu et al., 2017), occupation (Muneepeerakul et al., 2013), technology 
(Boschma et al., 2015; Petralia et al., 2017) or academic feld (Guevara et al., 2016) to the local 
prevalence of related activities.2 

These empirical studies typically proceed in three steps. First, they determine the relatedness 
among economic activities. Next, for each activity in a region, they calculate how prevalent related 
activities are in that region. Finally, they regress the growth rates of an activity on the prevalence 
of related activities. 

Although this procedure seems straightforward, its implementation involves several ad hoc 
choices. In this paper, we undertake a structured exploration of tens of thousands of candidate 
specifcations that aim to replicate the principle of relatedness. To do so, we create a specifcation 
grid on which we vary several aspects of the empirical model design. First, economic activities 
can be observed in diferent types of economic entities, each of which can be used to count 
co-occurrences. For instance, Hidalgo et al. (2007) study the co-occurrence of traded product 
categories in the export mix of countries, Porter (2003) and Delgado et al. (2010) of industries 
in regions, Teece et al. (1994) and Bryce and Winter (2009) of industries in frms, and Nefke 
et al. (2011) of products in manufacturing plants. Second, information on productive portfolios 
can be turned into relatedness matrices in diferent ways. Third, given a relatedness matrix, there 
are many ways to quantify how related one activity is to the local economy as a whole. For each 
of these design aspects, we explore dozens of choices, yielding tens of thousands of candidate 
specifcations. 

Our empirical analysis relies on Dun and Bradstreet’s World Base (henceforth, “D&B data”). 
This dataset reports for over 100 million establishments worldwide the number of employees, 
geographical coordinates, headquarter-subsidiary relations and up to six economic activities. We 
choose this dataset, because it allows us to observe co-occurrences of economic activities at four 
diferent levels of aggregation: the establishment, the frm, the city and the country. To test 
which candidate specifcation in our specifcation grid best captures the principle of relatedness, 
we focus on the economies of US cities and aggregate the D&B data to the level of city-industry 
combinations. Next, we repeatedly divide the data into train and test samples and generate out-of-
sample predictions for city-industry employment and employment growth patterns. This allows us 
to rank all candidate specifcations by their out-of-sample predictive performance. 

Overall, we fnd broad support for the principle of relatedness: many specifcations corroborate 
the positive association between the presence of related economic activity and an industry’s local 

1This insight was frst leveraged by scholars in scientometrics (Engelsman et al., 1991) and strategic management 
(Teece et al., 1994). 

2For a recent overview, see Hidalgo et al. (2018). 
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size and growth rate. However, many specifcations perform poorly, with about 10% - 20% of 
specifcations failing to outperform benchmarks that use random relatedness matrices. Moreover, 
which specifcation to use depends to some extent on the productive unit in which we observe 
industry co-occurrences and diferent units give rise to diferent relatedness matrices. To support 
future research in this area, we provide a number of guidelines in terms of specifcation choices 
that should be avoided, as well as our preferred specifcations. 

Apart from these specifcation recommendations, our analysis reveals a number of stylized facts 
about the principle relatedness. First, the principle of relatedness is often regarded as an expression 
of which capabilities a city has. Accordingly, moving into related activities is cheaper, because 
it limits the number of new capabilities that the city needs to acquire (see, e.g., Balland et al., 
2019). Therefore, many authors exclude from their analysis industries whose location decisions 
are not primarily driven by access to local capabilities, such as extractive industries, industries in 
the public sector and non-traded services. However, the principle of relatedness also turns out to 
be predictive in these sectors. This suggests that the principle of relatedness exists for reasons 
that go beyond the common explanation that inter-industry relatedness refects commonalities in 
capability requirements. Second, we fnd that constructing relatedness matrices in diferent types 
of productive units reveal diferent types of economies of scope. For instance, labor-sharing 
rationales are an important factor explaining co-occurrences in establishments and frms, but much 
less so in cities or countries. Yet, the co-occurrence patterns in cities contain information for 
predicting location and growth patterns beyond what is expressed in establishment and frm level 
co-occurrences. Finally, good predictive performance does not not guarantee a clear understanding 
of why some local industries thrive in a city: some of the best performing specifcations yield 
cluttered inter-industry relatedness networks that make it hard to disentangle clusters of related 
industries. 

Finally, when it comes to policy implications, an important fnding is that the principle of 
relatedness is much better at predicting where industries are located than where they grow. As a 
result, if we were to prioritize industries by their predicted growth potential, we would often pick 
industries that won’t exhibit growth spurts and miss industries that will. Moreover, even if we could 
identify promising growth candidates, the principle of relatedness ofers little guidance for how to 
promote their growth. In fact, one may ask: if these industries ft the local economy so well, why 
haven’t they grown yet? We will argue that this type of question can complement current policy 
frameworks by using the principle of relatedness, not to prioritize industries, but as an anomaly 
detection tool. Accordingly, the principle of relatedness can help policy makers diagnose their 
economy, by prompting them to ask why specifc industries are surprisingly small or large in their 
city. We conclude our paper by proposing to use this type of analysis to identify binding constraints 
to economic development in a city, integrating the principle of relatedness into the wider policy 
framework of Growth Diagnostics (Hausmann et al., 2008b). 

2 Data 
The D&B data are provided by Dun and Bradstreet, a business analytics frm. They contain 
information on over 100 million establishments across the world and ofer an almost complete 
census of economic establishments in the U.S.. For each establishment, the dataset records an 
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variable counts mean std 
# employees 165,987,254 
# establishments 26,374,079 
# establishment (>1 SIC 3-digit industry) 1,688,984 
# frms 363,620 
# frm (>1 primary SIC 3-digit industry) 83,548 
# cities 927 
# countries 100 
# industries 415 
# industries per establishment 1.08 0.34 
# industries per multi-industry establishment 2.25 0.59 
# industries per frm 1.66 2.20 
# industries per multi-industry frm 3.14 3.42 
# industries per city 288.37 56.11 
# industries per country 316.11 78.72 
# employees per city-industry 620.93 4,714.69 
log(# employees per city-industry) 3.94 2.14 
Δ log(��� ) -0.08 0.79 

Table 1: Summary statistics 
Multi-industry establishments are establishments with at least two distinct 3-digit SIC codes. Multi-industry 
frms are frms that list establishments with at least two distinct primary 3-digit SIC codes. Δ log(��� ) refers 
to employment growth between 2011 and 2019. 

identifer (the so-called D.U.N.S.3 number). This D.U.N.S. number is unique to the establishment 
and remains unchanged throughout its existence, regardless of changes in ownership. Furthermore, 
the dataset ofers for each establishment the number of employees,4 geographical coordinates, and 
the D.U.N.S. number of the parent establishment if the establishment is part of a larger corporation. 
The latter allows us to reconstruct corporate hierarchies that express these ownership linkages. 
Finally, each establishment can list up to six diferent industries. These industries are ordered by 
their importance, with the primary codes identifying the establishment’s main industry. Industry 
codes are recorded in the SIC or NAICS classifcations. In this paper, we rely on the 2011 and 
2019 waves of the D&B data, the frst and last waves available to us at the time of the analysis. 
Because our 2011 wave only contains SIC codes, our analysis is based on 3-digit industries of this 
classifcation system.5 Table 1 provides some general statistics for the dataset. 

The D&B data are highly representative of the US economy (a comparison with US County 
Business Patterns data is listed in Appendix A.2), but not necessarily of other economies. Therefore, 
we will mainly work with US data, limiting the sample to US establishments and defning frms 
as sets of US establishments that report to the same domestic (US-based) parent. However, to 

3D.U.N.S is a recursive acronym for D.U.N.S. Universal Numbering System. 
4Outside the U.S., most employment fgures are based on estimates by D&B. 
5At this level, there are over 400 industry codes, distinguishing, for instance, between the construction industries of 

“Masonry, stonework, tile setting, and plastering” and “Plumbing, heating and air-conditioning” or the manufacturing 
industries of “Computer and ofce equipment” and “Household appliances”. 
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examine the industrial portfolios of countries, we aggregate information for a number of national 
economies that are reasonably well represented by the D&B data (see Appendix A.1). This 
reduced representivity compared to the US will result in some uncertainty about the accuracy of 
country-level relatedness matrices. 

Another drawback of using D&B data is that, although they provide a fairly accurate account 
of the level of economic activity in a particular year, observed changes in economic activity tend 
to be quite noisy due to the fact that the information in the database is not updated in a uniform 
way (Crane and Decker, 2019; Neumark et al., 2007). To limit such concerns, we will calculate 
growth rates over the longest possible time period. In spite of these shortcomings, the micro-level 
character of the data, the record of ownership ties and the fact that industry classifcations do not 
change over time or across geography make the dataset uniquely suited for our purposes. 

3 Specifcation search 

3.1 Setting up the search grid 
Researchers need to make a number of choices when analyzing the principle of relatedness. We 
summarize these choices in Fig. 1. First, we need to choose the type of productive unit in which 
industries can coincide. That is, we need to determine at which level of aggregation we capture 
economies of scope. 

The D&B data allow us to identify the industrial portfolios of four types of productive units: 
establishments, frms, regions and countries.6 As a regional unit, we use US Core-Based Statistical 
Areas (CBSAs, i.e., metropolitan and micropolitan areas, henceforth “cities”). 

As we move from establishments to frms, cities and countries, industrial portfolios start 
refecting a widening range of economies of scope. As a consequence, the notion of relatedness 
changes. For instance, establishments are likely to combine activities that share similar inputs, 
technologies or skills (Nefke et al., 2011). Firms can harness additional economies of scope across 
their establishments, by pooling managerial, marketing, sales or other organizational processes 
(Teece et al., 1994). At the level of cities, industries may coagglomerate to share pools of specialized 
labor and suppliers, or physical and institutional infrastructure (see, e.g., Diodato et al., 2018; Ellison 
et al., 2010). In countries, the potential sources of economies of scope widen further to include 
climatic conditions and macro-level institutions such as intellectual property rights regimes or 
sophisticated fnancial markets (Rajan and Zingales, 1998). 

However, moving to higher level productive units is not costless: it increases the number of 
spurious and indirect relations between industries. For instance, ski-resorts exhibit few economies 
of scope with hydroelectric power plants. That is why we do not observe frms that specialize in 
both activities, let alone that combine them in one and the same economic establishment. Yet, 
these industries do often colocate in the same regions. Such combinations, which are more likely 
to be found in the industrial portfolios of higher-order productive units, confound relatedness as an 
estimate of economies-of-scope. We will study these issues in more depth in section 5.1. 

6When we construct the industrial portfolios of frms, we do not use all industries listed by their establishments, 
but only establishments’ primary industry codes (see Appendix B.1). This way, we avoid that industries that coincide 
in establishments by construction also do so in frms. 
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Once we have picked a type of productive unit, we need to construct three interrelated quantities. 
The prevalence of an economic activity (step 1 of Fig. 1), the relatedness of pairs of industries (step 
2) and the density of related activity around an industry in a local economy (step 3). To facilitate 
calculations, we collect our data into matrices at the bottom of Fig. 1. 

Prevalence, ���, expresses how strongly represented an industry � is in productive unit �. The 
simplest way to capture this is by the amount of employment unit � has in industry �. A more 
commonly used metric is the unit’s revealed comparative advantage (RCA) in the industry (e.g. 
Hidalgo et al., 2007). In appendix B, we list a number of plausible alternatives that mainly difer in 
the benchmark against which they assess how large an industry’s presence in a productive unit is. 

When it comes to measuring relatedness between industries, our grid relies on a class of so-
called outcome-based relatedness metrics. These metrics focus on the imprint that relatedness 
leaves on the behavior of economic actors.7 

Outcome-based measures have been justifed by reference to the survivor principle (Teece 
et al., 1994). Accordingly, the fact that we observe that two industries often coincide in the same 
productive units means that this combination is economically viable. Outcome-based measures 
have two advantages. First, there are many ways in which activities may be related. For instance, 
industries may share the same human capital requirements, use similar resources or be part of the 
same value chains. Outcome-based measures summarize all these linkages in a single metric that 
implicitly puts most weight on the linkages that matter most in the portfolio decisions of economic 
actors. Second, outcome-based measures can be derived from the same data that are used to study 
industrial growth or diversifcation. For instance, in economic geography, they can be derived 
from data that describe the industry mix of cities. As a consequence, outcome-based relatedness 
measures are by far the most common in the literature. 

Most outcome-based relatedness matrices are based on counts of how often two industries 
co-occur in the same productive units. These counts are typically normalized to account for how 
often we would expect the industries to co-occur merely by chance. We explore several metrics 
that difer mainly in these normalizations: correlations, cosine distances, conditional probabilities, 
and RCA-like transformations. We explain the diferences and similarities between these methods 
from a mathematical and conceptual point of view in Appendix B.2. In addition, we distinguish 
between approaches that use continuous prevalence information and those that binarize prevalence 
information. The latter consider that an industry is present in a productive unit whenever its 
prevalence exceeds some threshold value. 

Furthermore, some authors (e.g., Muneepeerakul et al., 2013) have argued that positive relat-
edness (industries that appear together more often than by chance) is qualitatively diferent from 
negative relatedness (industries that coincide less than by chance). We explore this by using not 
only the full relatedness matrices, but also versions in which all negative elements are set to zero. 

Finally, in step 3, we need to assess not just the relatedness between two industries, but also 
how related an industry is to a city’s entire portfolio of industries. To do so, we use a measure that 
Hidalgo et al. (2007) dubbed an industry’s “density” in the city. The density of industry � in city � , 
��� , is defned as the average prevalence of all other industries, � , in �, weighted by their relatedness 
to �: 

7Nefke and Henning (2013) distinguish between resource-based and outcome-based relatedness measures. 
Resource-based measures defne relatedness as the extent to which industries utilize the same resources or inputs. 
Examples are relatedness measures based on input-output tables (e.g., Fan and Lang, 2000), occupational employment 
vectors (e.g., Farjoun, 1994) or labor fows (Nefke and Henning, 2013). 
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∑ Í�� � ��� = � �� . (1)
��� �≠�∈�� �≠�∈�� 

where �� is the set of � most closely related “neighboring” industries to industry �, �� � the relatedness 
between industry � and � and � �� industry �’s prevalence in city �.8 Once again, we can either use 
continuous prevalence information as weights or binary information on whether or not an industry 
is present in a city. 

This procedure leads to various ways to quantify prevalence, relatedness and density. Combining 
all alternatives of each step in Fig. 1, we arrive at 32,480 diferent specifcations. 

3.2 Estimation 
To evaluate each specifcation, we study its performance in two prediction tasks: out-of-sample 
prediction of employment levels and out-of-sample prediction of employment growth. For the frst 
task, we estimate the following regression model: 

log ���� = ����� + �1 log ��� + �2 log ��� + ���� , (2) 

where ���� represents the density of industry � in city � at time �,9 ���� the employment of industry 
� in city � at time �, ��� the employment in industry � at time � and ��� the employment in city � at 
time �. ���� is a residual. 

For the second task, we estimate the following growth model: 

Δ log ���� = � log ���� + ����� + �1 log ��� + �2 log ��� + ���� if ���� > 0, ����+� > 0; (3) 

where � is the time-horizon over which growth is measured and � captures mean reversion ef-
fects.10 Accounting for the latter is crucial, because ���� and ���� are typically strongly and 
positively correlated. Therefore, failing to account for (negative) mean reversion efects will lead 
to an underestimation of the (typically positive) efect of density.11 Note that we only evaluate 
performance for growth at the intensive margin. That is, we only look at growth rates for local 
industries that exist in both 2011 and 2019. This simplifes the analysis because it avoids values of 
log(0) in the dependent variable and mean reversion term. 

8If density is used to predict employment levels, the contribution of the industry itself to the sum in eq. (1) would 
render the regression analysis of section 3.2 circular. When instead predicting growth, we will capture the industry’s 
own contribution by adding a mean-reversion term. Therefore, we exclude industry � from its own neighborhood in eq. 
(1). 

9Because ���� can have a highly skewed distribution, we log-transform density in specifcations where an industry’s 
prevalence in a city is based on RCAs or on raw employment counts. 

10These efects – which quantify the infuence of the size of an industry in the base year – have sometimes been 
interpreted as local competition efects (e.g. Delgado et al., 2014). However, negative mean reversion efects also 
arise as statistical artefacts if ���� is measured with noise or has an idiosyncratic element. 

11Diferent studies add diferent control variables. Apart from controls for the overall size of the region and of the 
industry, some studies add aggregate growth rates of regions and industries – what Hausmann et al. (2021) call radial 
growth. Another common specifcation adds industry and region dummies. Note, however, that both sets of control 
variables assume information that is not available in a forecasting exercise: radial growth explicitly assumes that 
aggregate future growth rates are available and region and industry fxed efects make the same assumption implicitly. 
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Figure 2: Kernel density plots of out-of-sample �2. 
Left: prediction of employment levels; right: prediction of employment growth. Vertical gray lines: �2 of 
specifcations of eqs (2) and (3) without density (���� ) term. Candidate specifcations shows the distribution 
of the �2 in the specifcation grid. Benchmark shows the distribution for runs in which density terms are 
based on random proximity matrices. 

To evaluate the models of eqs (2) and (3), we frst divide the dataset into a train and a test 
sample. The train sample is used to construct density and control variables, as well as to ft the 
model’s parameters. To make it computational feasible to run millions of regression analyses, we 
ft these models using Ordinary Least Squares (OLS). Next, predictive performance is evaluated 
on the test sample. We repeat this procedure 100 times to arrive at an average model ft for each 
candidate specifcation, expressed as the model’s out-of-sample �2, as well as confdence bands 
around this average. Finally, as a benchmark, we estimate models without density terms and with 
density terms that are based on (symmetric) relatedness matrices whose elements are drawn at 
random from a uniform distribution. 

4 Results 

4.1 Grid search 
Fig. 2 shows distributions of model performance across specifcations. The benchmark specifcation 
without density term is marked by vertical lines and dashed curves show benchmark performance 
distributions for specifcations with random relatedness matrices. 

The majority of specifcations corroborate the principle of relatedness: 88% of candidate 
specifcations outperform the median random benchmark in predicting employment levels and 78% 

10 



  

 

 
  

prediction task baseline 
log(emp.) Δ log(emp.)

Relatedness 
entity City City n.a. 
prevalence resid. (OLS) RCA n.a. 
binarized no yes n.a. 
metric cosine dist. RCA* n.a. 
� n.a. n.a. n.a. 
truncation yes yes n.a. 

Density 
prevalence resid. (OLS) RCA n.a. 
binarized yes yes n.a. 
# neighbors 300 100 

Out-of-sample �2 
n.a. 

log(emp.) 0.770 0.710 0.666 
Δ log(emp.) 0.063 0.076 0.060 

Table 2: Top specifcations. 
Specifcations with the highest out-of-sample �2 for employment levels (frst column), for employment 
growth regressions (second column) and without density term (third column). 

in predicting employment growth. However, there is substantial heterogeneity across specifcations. 
For specifcations in the 99th performance percentile, adding a density term raises the �2 by about 
10% when predicting employment levels and by about 16% when predicting employment growth. 
In the median specifcation, the density term raises the �2 of these models only by between 2 and 
3%. 

Appendix C.1 describes which specifcation elements matter most for a model’s performance. 
The most important aspect of the specifcation grid turns out to be how we defne density and, in 
particular, how we defne the prevalence of an industry in a city. Also the choice of the productive 
unit has a large impact on the quality of growth predictions. Of least importance is how many 
neighbors are used when calculating density variables. 

Table 2 shows the two top specifcations in terms of predictive validity. The frst column uses 
the prediction of employment levels as a criterion, the second the prediction of employment growth. 
Apart from relying on the same productive unit for relatedness calculations, the selected specif-
cations have little in common. Moreover, their performance is not very robust: the specifcation 
that predicts employment levels best, fails to do well in predicting employment growth, and vice 
versa. This suggests that the performance criteria are too noisy to confdently select an optimal 
specifcation from our grid. 

4.2 Robust performance 
To draw reliable conclusions, we explore which specifcation choices are robustly associated with 
good performance. We will call a specifcation robust if it ranks among the best 10% of specifca-
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tions in both prediction tasks. Next, we count how often each choice is used in this set of robust 
specifcations. 

Tables 3 and 4 report the results of this exercise. They display for each specifcation characteristic 
the share of specifcations that yield robust performance. These shares can be interpreted as the 
likelihood that a randomly chosen specifcation that uses a given characteristic preforms robustly. 
Columns correspond to the types of productive units that were used to measure inter-industry 
relatedness. Furthermore, the tables are split into two parts, one using binary (presence) information 
and one using continuous (prevalence) information to construct relatedness matrices (Table 3) or 
density variables (Table 4). 

The overall shares of robust specifcations are provided in bold. The likelihood that a random 
specifcation is robust is quite low: 2.0% for specifcations with binary (co-occurrence-based) 
relatedness matrices and 1.2% for specifcations with continuous (co-prevalence-based) relatedness 
matrices. 

Preferred specifcations. In appendix C.2, we provide recommendations for how to avoid poor 
predictive performance, listing a number of general lessons about how not to construct relatedness 
and density metrics. Here, instead, we analyze two specifcations that, in light of Tables 3 and 4, 
are a priori expected to work particularly well. The frst specifcation uses a relatedness matrix 
based on city-level binarized co-occurrence information. The second uses a relatedness matrix 
based on frm-level continuous co-prevalence information. As points of reference, we also consider 
the specifcation in Hidalgo et al. (2007), once based on country-level co-occurrences as used in 
Hidalgo et al.’s original study and once based on city-level co-occurrences. The latter are frequently 
used in the economic geography literature (Boschma et al., 2013; Montresor and Quatraro, 2017; 
Zhu et al., 2017). 

Table 5 shows that both preferred specifcations work remarkably well, ranking among the top 
5% of specifcations in terms of predicting employment and employment growth. Hidalgo et al.’s 
specifcation performs only marginally worse, as long as it uses city colocation information to 
calculate relatedness. 

5 Inside the principle of relatedness 
A core aspect of each empirical specifcation is its relatedness matrix. These matrices depend 
somewhat on technical details, such as normalizations and proximity metrics (see Fig. F.1 of 
Appendix F), but the most pronounced diferences are due to diferences in the productive units in 
which industry co-occurrences are recorded. Studying these diferences ofers an opportunity to 
learn more about the inner workings of the principle of relatedness. To do so, we focus on three 
aspects: (1) the degree to which matrices yield well-delineated clusters of industries, (2) the drivers 
of relatedness, and (3) their performance in predicting future growth. 

5.1 Industry spaces 
Relatedness matrices are often visualized as networks, or industry spaces (e.g., Hidalgo et al., 
2007). These networks can be used to identify clusters of related industries and how to do so is an 
active feld of research (Delgado et al., 2016; O’Clery and Kinsella, 2022). Here, we explore how 
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(BINARY) PRESENCES 
PREVALENCE Cntry City Firm Estab. Total 
RCA/RCA*/PMI 0.0% 3.0% 0.6% 0.1% 0.9% 
resid. (POI) 0.0% 3.0% 0.6% 0.0% 0.9% 
emp./log(emp.) 0.0% 0.0% 0.6% 0.1% 0.2% 
Total 0.0% 5.9% 1.9% 0.2% 2.0% 
METRIC Cntry City Firm Estab. Total 
RCA* 0.0% 1.7% 0.0% 0.0% 0.4% 
Pearson corr. 0.0% 1.3% 0.1% 0.0% 0.3% 
cosine dist. 0.0% 0.0% 0.3% 0.2% 0.1% 
� = 0.0 0.0% 1.2% 0.3% 0.0% 0.4% 
... 0.1 0.0% 0.9% 0.3% 0.0% 0.3% 
... 0.2 0.0% 0.5% 0.3% 0.0% 0.2% 
... 0.3 0.0% 0.2% 0.2% 0.0% 0.1% 
... 0.4 0.0% 0.0% 0.2% 0.0% 0.1% 
... 0.5 0.0% 0.0% 0.2% 0.0% 0.0% 
Total 0.0% 5.9% 1.9% 0.2% 2.0% 

(CONTINUOUS) PREVALENCES 
PREVALENCE Cntry City Firm Estab. Total 
RCA* 0.0% 2.0% 0.2% 0.2% 0.6% 
resid. (OLS) 0.0% 0.2% 1.3% 0.1% 0.4% 
PMI 0.0% 0.4% 0.0% 0.0% 0.1% 
emp. 0.0% 0.0% 0.0% 0.1% 0.0% 
resid. (POI) 0.0% 0.1% 0.0% 0.0% 0.0% 
RCA 0.0% 0.0% 0.0% 0.1% 0.0% 
log(emp.) 0.0% 0.0% 0.0% 0.1% 0.0% 
Total 0.0% 2.8% 1.4% 0.6% 1.2% 
METRIC Cntry City Firm Estab. Total 
Pearson corr. 0.0% 2.7% 0.6% 0.0% 0.8% 
cosine dist. 0.0% 0.1% 0.8% 0.6% 0.4% 
Total 0.0% 2.8% 1.4% 0.6% 1.2% 

Table 3: Defnition of relatedness. 
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(BINARY) PRESENCES 
PREVALENCE Cntry City Firm Estab. Total 
RCA/RCA*/PMI 0.0% 2.1% 0.1% 0.4% 0.7% 
resid. (POI) 0.0% 2.1% 0.1% 0.4% 0.7% 
resid. (OLS) 0.0% 0.0% 0.4% 0.0% 0.1% 
Total 0.0% 4.3% 0.7% 0.8% 1.4% 
TRUNCATION Cntry City Firm Estab. Total 
positive 0.0% 1.7% 0.3% 0.0% 0.5% 
all 0.0% 0.9% 0.3% 0.8% 0.5% 
n.a. 0.0% 1.6% 0.1% 0.0% 0.4% 
Total 0.0% 4.3% 0.7% 0.8% 1.4% 
# NEIGHBORS Cntry City Firm Estab. Total 
50 0.0% 1.3% 0.3% 0.5% 0.5% 
100 0.0% 1.2% 0.1% 0.3% 0.4% 
200 0.0% 0.8% 0.1% 0.0% 0.2% 
300 0.0% 0.5% 0.1% 0.0% 0.1% 
415 0.0% 0.5% 0.1% 0.0% 0.1% 
Total 0.0% 4.3% 0.7% 0.8% 1.4% 

(CONTINUOUS) PREVALENCES 
PREVALENCE Cntry City Firm Estab. Total 
resid. (OLS) 0.0% 1.3% 2.3% 0.0% 0.9% 
RCA* 0.0% 1.1% 0.1% 0.0% 0.3% 
resid. (POI) 0.0% 0.9% 0.0% 0.0% 0.2% 
PMI 0.0% 0.9% 0.0% 0.0% 0.2% 
log(emp.) 0.0% 0.7% 0.1% 0.0% 0.2% 
emp. 0.0% 0.6% 0.0% 0.0% 0.2% 
Total 0.0% 5.5% 2.5% 0.0% 2.0% 
TRUNCATION Cntry City Firm Estab. Total 
positive 0.0% 2.4% 0.4% 0.0% 0.7% 
all 0.0% 0.9% 0.2% 0.0% 0.3% 
n.a. 0.0% 2.3% 1.8% 0.0% 1.0% 
Total 0.0% 5.5% 2.5% 0.0% 2.0% 
# NEIGHBORS Cntry City Firm Estab. Total 
100 0.0% 1.4% 0.5% 0.0% 0.5% 
50 0.0% 1.3% 0.4% 0.0% 0.4% 
200 0.0% 1.1% 0.6% 0.0% 0.4% 
415 0.0% 0.9% 0.5% 0.0% 0.3% 
300 0.0% 0.8% 0.5% 0.0% 0.3% 
Total 0.0% 5.5% 2.5% 0.0% 2.0% 

Table 4: Defnition of density. 
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Preferred specifcations Hidalgo et al. (2007) 
binary continuous country city 

Relatedness 
entity city Firm Country city 
prevalence RCA resid. (OLS) RCA RCA 
binarized yes no yes yes 
metric RCA* cosine dist. cond. prob. cond. prob. 
� n.a. n.a. 0.0 0.0 
truncation yes yes n.a. n.a. 

Density 
prevalence resid. (OLS) resid. (OLS) RCA RCA 
binarized no no yes yes 
# neighbors 100 100 415 415 

�2 - levels 
�2 - growth 

0.707 
0.069 

(0.950) 
(0.974) 

Out-of-sample performance 
0.730 (0.989) 0.685 (0.623) 
0.068 (0.955) 0.062 (0.508) 

0.704 
0.067 

(0.929) 
(0.926) 

Table 5: Preferred specifcation. 
Left panel: specifcations with binary and continuous prevalence used to construct relatedness matrices. 
Right panel: specifcations in Hidalgo et al. (2007) using industry combinations observed within countries 
and cities. The bottom rows show the specifcation’s performance in terms of out-of-sample �2, with the 
corresponding percentile rank position in parentheses. 

well diferent matrices lend themselves for this task, focusing on the relatedness matrices in our 
preferred specifcations. 

Delineating clusters of industries 

Appendix I displays two industry spaces for each productive unit, one for our preferred binary and 
one for our preferred continuous specifcation. Some industry spaces exhibit more structure than 
others. Although deciding how “structured” a network is is somewhat subjective, we can quantify 
an aspect of this by determining how easy it is to identify communities in the network. 

To do so, we calculate the modularity and the efective number of communities for each industry 
space. Modularity quantifes to what extent a network consists of easily separable communities. It 
is defned as the fraction of ties that form between industries belonging to the same community, 
minus the fraction of such ties that we would have expected, had links formed at random. A 
high modularity score thus means that most links form between industries in the same community, 
as opposed to across communities, i.e., that the industry space is composed of distinct, well-
delineated clusters.12 The efective number of communities is a so-called Hill number (Hill, 1973). 
It is calculated as �� , where � represents the entropy of the communities’ size distribution. It 

12Because relatedness matrices are too dense for network analysis, we use the truncated networks of Figs I.1 and 
I.2, not of the full relatedness matrices. To calculate modularity, we rely on the Louvain algorithm (Blondel et al., 
2008) to compute the best community division and then calculate the corresponding modularity scores. The random 
benchmark used in these calculations preserves node degrees, but randomly rewires connections. 
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Figure 3: Modularity and efective number of communities. 
The vertical axis depicts the modularity and the horizontal axis the efective number of communities – defned 
as �� , where � denotes the entropy of the size distribution of the communities – for diferent relatedness 
matrices. Left panel uses our preferred specifcation for binary presence data to construct the relatedness 
matrices, right panel for continuous prevalence data. 

refects how many communities of equal size would be needed to arrive at the same observed 
entropy. 

Results are shown in Fig. 3. Industry spaces based on frm-level portfolios exhibit the clearest 
community structures, combining a modest number of distinct communities with a high degree of 
modularity. In contrast, cities give rise to the most cluttered industry spaces with only few not very 
well-delineated communities. The industry spaces for establishments and countries are somewhere 
in between these two extremes. 

Conformance to sectoral classifcation 

Do industries that belong to the same higher-level sectors tend to be more related? To study this, we 
defne the SIC relatedness between two industries as the number of leading digits their SIC codes 
shares. Given that we work with 3-digit industries, SIC relatedness can be 0, 1 or 2. If relatedness 
is particularly high between industries in the same sector but not across sectors, we will say that the 
relatedness matrix conforms closely to the classifcation system’s sectoral boundaries. Because of 
our familiarity with classical sector designations, such matrices tend to be more intuitive. 

Fig. 4 plots the average relatedness for industry pairs at diferent levels of SIC relatedness. 
The binary and continuous specifcations conform about equally closely to the higher-level sector-
boundaries. However, there are pronounced diferences between productive units. The closest 
agreement with the classifcation system is achieved by relatedness matrices based on the industrial 
portfolios of establishments. The next closest agreement relies on frm portfolios. In contrast, 
industrial portfolios of cities and countries yield relatedness matrices that align much less with the 
sectoral classifcation. As a consequence, the establishment- and frm-level relatedness matrices 
yield quite intuitive clusters. In contrast, relatedness based on city- or country-level colocation 
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Figure 4: Agreement with the industrial classifcation system. 
The vertical axis depicts the average relatedness and its 95% confdence interval between two industries 
based on our preferred binary (left) or continuous (right) specifcation. To ensure comparability, links are 
normalized by the sum total of elements in each relatedness matrix, multiplied by 100,000 for graphical 
convenience. The horizontal axis depicts industries’ SIC relatedness, where 0 means that the industries 
belong to diferent sectors. 

patterns often cuts across sector boundaries, suggesting connections that are more surprising at 
best and puzzling at worst. 

Drivers of relatedness 

In section 3.1, we speculated that diferent types of productive units harness diferent types of 
economies of scope. To explore this, we regress the number of co-occurrences between industries 
on measures of the strength of value chain linkages and human capital similarities. To quantify 
value-chain linkages, we cast US input-output tables (Ingwersen et al., 2022) into the SIC 3-digit 
classifcation. Next, we symmetrize these tables by using the maximum of the input coefcients 
between industries � and � , �� � , in either direction: 

��� = max(�� � , � ��)� � 

To quantify human capital similarities, we rely on the US Bureau of Labor Statistics’ Occupa-
tional Employment and Wage Statistics for 2011.13 We again transform industry codes into 3-digit 
SIC industries. The human capital similarity between industry � and � is now calculated as: 

13Retrieved from www.bls.gov/oes. 
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(1) 
Establishment 

(2) 
Firm 

(3) 
City 

(4) 
Country 

�ℎ� 7.344*** 2.424*** 1.036*** 1.114*** 
(1.07) (0.24) (0.00) (0.01) 

��� 1.056** 1.044*** 1.012*** 1.014*** 
(0.02) (0.01) (0.00) (0.00) 

� 85,464 85,029 85,903 85,903 
pseudo-�2 0.784 0.749 0.860 0.453 

Table 6: Drivers of co-occurrences of industries. 
Standard errors (two-way clustered by industry) in parentheses, *: � < 0.05, **: � < 0.01, ***: � < 0.001. 
The table reports incidence rate ratios from a Poisson pseudo-maximum-likelihood regression of the number 
of co-occurrences of two industries in a productive unit on human capital similarity and value-chain linkages 
between the industries, controlling for two-way industry fxed efects. Coefcients are standardized by each 
variable’s standard deviation. Co-occurrence counts refer to the number of times that two industries exhibit 
��� > 1 in the same productive unit. Columns label the type of productive unit in which co-occurrences 
are observed. 

� � 
���/��

��� = � > 1 ,
��/� 

�� � = ��� �� � , 
�� � 

�� �� � = �, 
��� � 

�� �� � 
�ℎ� = � � �� �� � + 1 

where � (.) is an indicator function that evaluates to 1 if its argument is true and to 0 otherwise, ��� 

is the employment of occupation � in industry �, �� and �� the employment of occupation � and 
industry � in the US and � the overall employment in the US. In words, we frst determine which 
occupations are overrepresented in which industries. Next, we count how many occupations are 
overrepresented in industry � and � . Finally, we normalize these occupational co-occurrences using 
an RCA-style metric, that we cast between 0 and 1 to reduce skew, mimicking the steps described 
in eqs (B.1), (B.2) and (B.15): 

Next, we regress co-occurrence counts on value chain and human capital linkages between 
industries. We standardize explanatory variables by mean-centering them and dividing them by 
their standard deviations. As a result, the reported incidence rate ratios (IRRs) express by which 
factor co-occurrences go up for a one-standard-deviation increase in human capital similarities or 
value-chain linkages. Table 6 reports results for Poisson pseudo-maximum-likelihood estimation 
with two-way industry fxed efects. 

The main driver of co-occurrence patterns is human capital similarities. Although this holds 
across all models, efects are particularly salient for co-occurrences in establishments and frms, 
where a one-standard-deviation increase in human capital similarity is associated with an over 
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7-fold increase in co-occurrences in establishments and an over 2-fold increase in frms. In cities 
and countries, the link between co-occurrence patterns and labor linkages is much weaker, lifting 
co-occurrences by just 4% and 11%. This suggests that human-capital based economies of scope 
are core to how industries are combined in establishments and frms, but labor market externalities 
are much less important for how industries co-agglomerate in cities and countries. Finally, although 
value-chain linkages are always statistically signifcant, they explain comparatively little of which 
industries co-occur in all productive units. 

How much information does a productive unit add? 

Regardless of the productive unit in which we measure relatedness, density always has a positive 
and signifcant efect on the sizes and growth rates of local industries in our preferred specifcations. 
But do diferent productive units ofer redundant or complementary perspectives on relatedness? 

To analyze this, we run our performance regressions with pairs of density variables, juxtaposing 
the relatedness matrices associated with two diferent productive units. We then ask in which 
pairings one of the two density variables turns statistically insignifcant. When this happens, the 
juxtaposed relatedness matrices contain redundant information. 

Table 7 shows results. To economize on space, we only display coefcients for the density 
variables, omitting control variables. Although frms and establishments give rise to diferent 
relatedness matrices, the information in establishments that is relevant for our predictions is largely 
the same as in frms. In contrast, city-level co-occurrences ofer information that is not captured 
in the establishment or frm level relatedness matrices. This suggests that the industrial portfolios 
of frms (or establishments) and of cities provide complementing views on the predicted growth 
trajectories of cities.14 

Prediction versus interpretation 

Our results so far suggest an interesting tension between interpretability and predictive validity. 
City-level relatedness matrices tend to be top performers when it comes to out-of-sample prediction 
and they contain information that is not present in other relatedness matrices. Yet, city-level industry 
spaces are less intuitive and interpretable than frm- or establishment-level ones: they neither closely 
follow the delineations between traditional sectors, nor strongly refect human capital or value-chain 
links. 

5.2 Sector-specifc estimations 
So far, we have studied the principle of relatedness in the economy as a whole. However, industries 
difer in how much their location and growth patterns will be determined by local capabilities. In 
some industries, capabilities are only of secondary concern. For instance, industries that rely on 
natural resources can only locate where those resources are found: fshing requires access to bodies 
of water and, regardless of which capabilities a city has, mining activities cannot emerge without 

14The country level also ofers new information, however, only when it comes to predicting employment levels, not 
employment growth. Because country-level relatedness provides only weak information about growth opportunities, 
we discount this evidence. These fndings are corroborated when density variables are constructed with our preferred 
continuous instead of binary specifcations (see Appendix G). 
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productive unit (1) (2) 
Efect of densit 

(3) 
y on employm

(4) 
ent levels 

(5) (6) 

establishment 0.511*** 0.318*** 0.439*** 
(0.0364) (0.0397) (0.0373) 

frm 0.0580 0.199*** 0.306*** 
(0.0367) (0.0426) (0.0328) 

city 0.378*** 0.462*** 0.463*** 
(0.0436) (0.0461) (0.0473) 

country 0.186*** 0.289*** 0.237*** 
(0.0534) (0.0467) (0.0565) 

� 384,705 384,705 384,705 384,705 384,705 384,705 
�2 0.720 0.732 0.727 0.723 0.714 0.729 

Efect of density on employment growth 
establishment 0.00345* 0.00275 0.00755*** 

(0.00174) (0.00149) (0.00138) 
frm 0.00576*** 0.00357* 0.00803*** 

(0.00170) (0.00149) (0.00124) 
city 0.00937*** 0.00891*** 0.0105*** 

(0.00152) (0.00155) (0.00133) 
country 0.000895 0.000832 0.00118 

(0.00151) (0.00139) (0.00138) 
� 245,395 245,395 245,395 245,395 245,395 245,395 
�2 0.068 0.072 0.072 0.067 0.068 0.072 

Table 7: Redundancy and complementarity in pairs of density variables. 
Standard errors in parentheses, *: � < 0.05, **: � < 0.01, ***: � < 0.001. Upper panel: regression 
analysis of employment levels, controlling for industry and city size. Lower panel: regression analysis of 
employment growth, controlling for mean reversion efects, industry and city size. The coefcients refect 
the efects of density measured using the productive units listed in the frst column. All density measures are 
based on our preferred binarized specifcation. For results based on our preferred continuous specifcations, 
see Table G.1 in Appendix G. 

mineral deposits. Similarly, many nontraded services, such as restaurants and shops, require easy 
access to large markets, and the presence and size of public services, such as health care and 
education, are determined by government policies. Many authors therefore restrict their analysis 
to industries in the private sector that produce tradable products and that are not based on natural 
resources. 

But how relevant are these restrictions? To answer this question, we reanalyze our specifcation 
grid for four (mutually exclusive) sectors: public-sector industries, resource-based industries, non-
traded services, and all remaining industries, to which we will refer as traded industries. The exact 
defnition of each sector is provided in Appendix D. 

Figs 5a and 5b show scatter plots of the out-of-sample performance in each sector against the 
out-of-sample performance in the overall economy. Predictive performance is highly correlated 
across sectors: specifcations that perform well in the overall sample also tend to do so within 
each sector. This consistency is reassuring: it suggests that our analysis is robust, yielding similar 
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preferred specifcations in diferent subsamples. 
Furthermore, whenever observations lie above the 45 degree line, specifcations perform better 

in the corresponding sector than in the overall economy. This often happens in the traded sector, but 
rarely in nontraded services. However, in all four sectors, the principle of relatedness has at least 
some predictive validity. Moreover, predictive performance is not particularly poor in public sector 
activities or resource-based industries, suggesting that restricting the sample to traded industries 
may be helpful, but not necessary. 

There are plausible explanations for why predictability is high also outside non-resource based, 
private-sector, traded industries. For instance, diferent resource-based activities may be attracted 
by the same geological conditions or their presence may be betrayed by the presence of downstream 
industries. Similarly government services will locate in predictable locations such as regional 
capitals or following central place theory (Christaller, 1933). However, such explanations align 
poorly with the leading explanation for the principle of relatedness, namely, that the reason why we 
observe related diversifcation is that related industries share similar capability requirements. The 
principle of relatedness would instead refect also other forces than capabilities. Alternatively, we 
could stretch the concept of capabilities beyond its common meaning. However, this would make 
the term less discerning: we typically think of a capability as something that a city can develop 
through investments and learning, not as something that is predetermined by its location. 

5.3 Related variety or relatedness? 
A particularly important specifcation choice turns out to be whether to base density on continuous 
information on industries’ prevalence in a city as opposed to binary information on their presence. 
This fnding is more than a mere technicality. It has important implications for our understanding 
of the principle of relatedness. To see this, note that, if in eq. (1) we use continuous prevalence 
information, density quantifes the size or mass of related industries in the city, reminiscent of 
Marshallian externalities (Rosenthal and Strange, 2004). In contrast, if we use binarized (presence) 
information, density becomes a proximity-weighted count of related industries. This emphasizes 
the diversity of activities in a city, reminiscent of Jacobs externalities and related variety benefts 
(Frenken et al., 2007). 

Now, does the principle of relatedness refect benefts of related variety or of related mass? To 
analyze this, we construct two versions of our density measures that only difer in whether they use 
continuous prevalence or binarized presence information. Because performance also depends on 
the relatedness matrix used, we run separate regressions for each type of productive unit used to 
calculate relatedness. 

Results in Table 8 ofer a surprisingly clear verdict. Regardless of whether we predict employ-
ment levels or growth rates, only the density that uses continuous information on the prevalence of 
an industry in a city is positively and signifcantly associated with employment and employment 
growth.15 This fnding may explain why the positive efects of related variety on economic devel-
opment in Frenken et al. (2007) have sometimes proved hard to replicate. For instance, seven out 
of thirteen studies reviewed by Content and Frenken (2016) report mixed support for the related 
variety hypothesis. Although a full analysis of this is beyond the scope of this paper, our analysis 

15Table G.2 of Appendix G corroborates this fnding, using our preferred continuous specifcation, where “continu-
ous” refers to the way in which we calculate relatedness, not density. 
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Figure 5: Out-of-sample performance by sector. 
� −�2 

�Plots show �
2 

�2 , with �2 the out-of-sample �2 of specifcation � and �2 of the baseline specifcation. � � 
�

Each observation in the scatterplots represents a specifcation in our specifcation grid, with its performance 
in the overall sample on the horizontal axis and in a specifc subsample on the vertical axis. Panel 5a refers 
to performance in predicting employment levels, panel 5b in employment growth. 

suggests that previously reported related variety efect may, in fact, be due to omitted-variable bias: 
because related variety studies don’t control for related mass efects, they may erroneously have 
attributed the efect of relatedness to related variety.16 

6 Policy implications 
Because the principle of relatedness helps identify promising diversifcation paths, it has started 
to play an important role in regional development policy frameworks (e.g., Balland et al., 2019; 
Boschma et al., 2022; Hidalgo, 2022; Rigby et al., 2022), with the European Union’s Smart 
Specialization policy as a leading example. These frameworks often use industry space networks 
to help policy makers prioritize certain industries over others. For instance, Balland et al. (2019) 
argue that relatedness proxies how costly it would be for a region to develop a specifc industry. 
They submit that, because related industries (presumably) share many capabilities, moving into 
industries that are closely related to a region’s existing industries economizes on the number of new 

16Note that related variety studies typically estimate efects at the aggregate level of cities, not industries within 
cities. Controlling for relatedness would therefore require measures of industrial coherence as in Teece et al. (1994). 
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Establishment Firm 
Employment levels 

City Country 

density���� 0.574*** 0.533*** 0.650*** 0.518*** 
(0.0278) (0.0332) (0.0469) (0.0382) 

density��� -0.0863* -0.171*** -0.105 -0.0518 
(0.0382) (0.0501) (0.0633) (0.0425) 

� 384705 384705 384705 384705 
�2 0.721 0.711 0.724 0.706 

Employment growth 
density���� 0.00748*** 0.00893*** 0.0104*** 0.00301 

(0.00121) (0.00130) (0.00172) (0.00154) 
density���� 0.00371* -0.00109 0.000989 0.00391 

(0.00188) (0.00168) (0.00218) (0.00201) 
� 245395 245395 245395 245395 
�2 0.068 0.068 0.072 0.065 

Table 8: Related variety versus mass of related activity. 
Standard errors in parentheses, *: � < 0.05, **: � < 0.01, ***: � < 0.001. Upper panel: regression analysis 
of employment levels, controlling for industry and city size efects. Lower panel: regression analysis of 
employment growth, controlling for mean reversion, industry and city size efects. The coefcients refect 
the efects of density based on relatedness measured in the productive units listed in the columns, where 
density���� uses continuous information on an industry’s prevalence in a city, and density��� binarized 
information on whether or not an industry is signifcantly present in the city. For results based on our 
preferred continuous specifcations, see Table G.2 in Appendix G. 

capabilities the region needs to develop. 
Our results in section 4 support such an interpretation. However, just because it is easy to 

develop an industry does not mean that it is attractive to do so. Therefore, most authors comple-
ment information about inter-industry relatedness with information that captures how attractive an 
industry is. For this purpose, diferent alternatives have been proposed. For instance, Balland et al. 
(2019) and Rigby et al. (2022) suggest that regions should try to move into nearby industries that 
are complex. Complex industries require many capabilities and are therefore somewhat shielded 
from competition from other regions. By developing closely related complex industries, regions 
can economize on capabilities, while benefting from the barriers to entry that characterize these 
industries. 

However, this approach has several drawbacks. First, because most capabilities are hard to 
observe, determining the complexity of an industry is not straightforward. Balland et al. (2019) and 
Rigby et al. (2022) rely on the so-called economic complexity index (ECI, Hidalgo and Hausmann, 
2009), which infers complexity from which cities host which industries. Under certain assumptions, 
the ECI ranks industries by the technological sophistication they require (Schetter, 2019; Yildirim, 
2021). However, Mealy et al. (2019) show that, more generally, the ECI can be interpreted as 
the best one-dimensional representation of a “location space”, a network that links locations that 
host related industries. This means that, by construction, low complexity regions will be close 
to low complexity industries, and high complexity regions to high complexity industries. As a 
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consequence, the two axes on which the policy framework in Balland et al. (2019) is based – 
relatedness and complexity – are not independent. Finally, McNerney et al. (2021) show that the 
ECI can also be regarded as a city’s position along a long-run direction of transformation that is 
consistent with the short-run diversifcation patterns described by the principle of relatedness. This 
debate shows that the interpretation of complexity as a measure of desirability needs to be qualifed. 

One solution is to not overly rely on the ECI when determining the desirability of industries. 
For instance, Hidalgo (2022) argues that the desirability of an industry depends on policy priorities. 
Although these priorities may include productivity and employment growth – which are related 
to complexity – they may also refect other objectives, such as reducing inequality or a region’s 
carbon footprint. Furthermore, Hausmann and Klinger (2009) propose combining the ECI with 
information on an economy’s productivity to determine whether this productivity fully refects the 
complexity of the economy’s industrial base. If productivity falls short of what would be expected 
based on the economy’s ECI, there should be scope for raising productivity without diversifying into 
new activities. In this case, policy should focus on increasing the efciency with which capabilities 
are deployed. Only once productivity exceeds the levels implied by the city’s industry mix does 
further diversifcation become necessary. 

Another solution is to change how the principle of relatedness is used to support policy making. 
Such an approach would also help overcome three other drawbacks of extant policy frameworks that 
emerged from our specifcation search. First, as shown in section 5.2, the principle of relatedness is 
unlikely to be exclusively driven by capabilities. Most authors acknowledge this either implicitly or 
explicitly and list a variety of issues that should be considered in smart specialization policies, such 
as institutions (Grillitsch, 2016) and entrepreneurship (Cofano and Foray, 2014; Hausmann and 
Rodrik, 2003). Second, as noted in section 5.1 about the lack of interpretability of predictions, even 
if capabilities were its main driving force, the principle of relatedness still does not provide insights 
into which capabilities hold back a city’s development. Third, as shown in Table 5), the principle 
of relatedness is much better at predicting how large an industry should be in a city today than how 
much it will grow or shrink in the future: the out-of-sample �2 in predictions of employment levels 
is about a factor ten higher than in predictions of employment growth. To further illustrate these 
points, we examine how the principle of relatedness could be used to prioritize candidate industries 
in practice. 

Selecting industries for growth spurts 
To make matters concrete, we assume that policy makers are particularly interested in identifying 
industries that are likely to undergo growth spurts, where we defne growth spurts as industries 
with ��� < 0.25 in a city in 2011 that jump to ��� > 1 in 2019. To identify likely candidates for 
such growth spurts, we rely on the principle of relatedness to predict industries’ local employment 
in 2011, using our preferred binary specifcation, with city-based relatedness. The residual of 
this regression tells us for each city-industry combination by how much employment exceeds the 
predictions of the principle of relatedness. Positive residuals suggest that the industry is “too big”, 
negative residuals that it is “too small”. As a consequence, the smaller (more negative) the residual 
is, the greater a local industry’s presumed growth potential will be. 

Figure 6 evaluates how accurate the guesses that we provided to our imaginary policy makers 
were. The horizontal axis bins all city-industry observations by their estimated residuals. The 
vertical axis shows which share of local industries in each of these bins undergo growth spurts. 
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Figure 6: Identifying candidates for growth spurts. 
Share of city-industry combinations that undergo a growth spurt. The horizontal axis bins observations 
based on the residual of a regression that predicts the size of an industry in a city. The more negative this 
residual is, the more the principle of relatedness would predict the industry to grow. 

Results are somewhat mixed. Our advice would certainly have helped policy makers avoid 
industries with abysmal growth potential: very few industries with large positive residuals exhibited 
growth spurts. However, if the goal was to pick winners, Fig. 6 ofers a cautionary tale: even in 
local industries with very large negative residuals, the likelihood of growth spurts is just marginally 
above average (3.36% against 2.68%). 

Why may this have happened? A possible explanation is that the very fact that industries are 
small in spite of being closely related to the wider local economy signals that these industry face 
some (unobserved) hurdles. After all: why, if it were so easy to develop the industry, has the 
city not done so yet? This suggests leveraging the principle of relatedness for something other 
than predicting future development paths. Instead, the principle of relatedness may help detect 
anomalies – industries that are active in a region that according to the principle of relatedness 
shouldn’t be and industries that are not active, while the principle of relatedness predicts they 
should be. 

Anomaly detection and Growth Diagnostics 
A policy framework that illustrates the value of anomaly detection is Growth Diagnostics (GD, 
Hausmann et al., 2008b). GD starts from the position that for economic development to happen, 
many things need to be in place. Applied to industrial development in cities, this means that for an 
industry to be productive in a city, it needs access to a large number of complementary factors. For 
instance, to fourish, industries need a highly skilled and diversifed workforce, but also functioning 
infrastructure and utilities, efective institutions, risk-taking entrepreneurs and so on. If one of 
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these factors is in low supply, expanding any of the other factors is unlikely to lead to growth until 
the initial bottleneck is resolved. To fnd these bottlenecks, Hausmann et al. (2008a) propose a set 
of diagnostics tools that aim to identify binding constraints to growth.17 

We propose that industry spaces can be a useful addition to this toolbox: although the principle 
of relatedness may not very accurately identify growth candidates, it reliably pinpoints which 
industries are surprisingly small or large. Instead of assuming that industries that are too small 
need to be kick-started by policy prioritization, a more prudent approach would frst scrutinize the 
anomalies that the principle of relatedness detects in a city. 

To illustrate this, we added some examples in Fig. 6 of city-industry combinations with – 
apparently – high growth potential. These examples were not picked at random. On the contrary, 
it is quite obvious that Phoenix (AZ) and Albuquerque (NM) are unlikely to develop deep-sea 
transportation activities, and that opening gold mines in Pittsburgh is probably no promising 
proposition either. Instead, these high-growth candidates are better understood as anomalies that 
point to binding constraints to development. In Phoenix and Albuquerque, a prominent constraint is 
lack of coastal access, in Pittsburgh, lack of gold deposits would explain the city’s poor performance 
in gold mining. 

On the other hand, some industries that are deemed far too large for a city are still unlikely to 
shrink. For instance, the over 15,000 employees in Research, development and testing in Knoxville 
(TN) represent a very large, positive, anomaly. However, this anomaly is solidly anchored in the 
city by the presence of the Oak Ridge National Laboratory (ORNL). This research institute has deep 
roots in the region and is fnanced by the federal government as part of Department of Energy’s 
system of national research labs. It is therefore unlikely to leave the city. As a consequence, the 
fact that Research, development and testing is too large according to the principle of relatedness 
should not be interpreted as a risk for Knoxville, but rather as an opportunity: the city is likely 
to be able to attract related industries that are synergistic with ORNL’s work, some of which are 
already present, such as Laboratory apparatus and analytical, optical, measuring, and controlling 
instruments and Engineering, architectural and surveying services. 

The voice of absent industries 
Most anomalies will be harder to explain than the examples listed above. Instead, they require 
further investigation. The aim of such investigations is to understand which constraints hold back 
industries’ growth in a city. This may involve further statistical analysis, surveys or interviews with 
private sector representatives. However, the most binding constraints are often those that prevent 
an industry from locating in a city altogether. Precisely here is where policy makers struggle most 
to learn about how to lift such constraints: the industries that are absent typically have no “voice” 
in the city, nor do they generate any data (e.g., requests for permits, vacancies, proftability reports) 
in local administrative records. By highlighting anomalies, the principle of relatedness identifes 
which absent industries merit further analysis. Policy makers can then invest in targeted analysis, 
such as approaching frms in these industries outside the city to ask what prevents them from 
moving to the policy maker’s city. 

17These diagnostic tools try to infer missing factors by observing the behavior of economic actors. In particular, if 
certain factors are absent, frms and other economic actors will try to fnd workarounds. Observing these workarounds 
provides important clues for policy makers about development bottlenecks in their economies. 
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By focusing less on which activities to support and which not, anomaly detection circumvents 
the risks associated with picking winners. More importantly, however, using the principle of 
relatedness as a diagnostic tool can help understand what kind of capabilities are missing in a city. 
Using several relatedness matrices – each focusing on a diferent type of economies of scope – can 
help further triangulate these missing capabilities. 

At the same time, the principle of relatedness remains useful in policy prioritization. After all, 
given that the principle of relatedness predicts quite well which industries will not exhibit growth 
spurts, it may still help prioritize (or, better, deprioritize) growth candidates. For instance, the 
rankings of industries derived from the principle of relatedness are apolitical and objective. This 
can be used to put a check on the power of well-funded lobbies and vested interests. Anomaly 
detection should therefore be considered as a refnement, not replacement, of existing policy 
frameworks. 

7 Discussion and conclusion 
The principle of relatedness posits that diversifcation and growth trajectories of cities are pre-
dictable: cities typically grow by developing and expanding industries that are closely related to 
their current portfolio of industries. We have shown that the principle of relatedness is robust across 
a wide set of specifcations, although there are substantial diferences in predictive performance 
and interpretability across these specifcations. Beyond performance diferences, diferent speci-
fcations can be seen as testing diferent “favors” of the principle of relatedness. As a result, our 
specifcation search also yields insights into the mechanisms behind the principle of relatedness. 

First, diferent types of productive units combine diferent industries, resulting in diferent types 
of relatedness. For instance, establishment and frm portfolios exhibit relatedness patterns that 
conform closer to the sectoral classifcation system than city and country portfolios. Furthermore, 
co-occurrences of industries in establishments and frms are strongly shaped by how similar the 
mix of occupations of diferent industries is. In comparison, value-chain linkages seem much 
less important drivers of co-occurrences. Moreover, co-occurrence patterns in cities and countries 
follow neither human capital nor value chain links very closely. As a consequence, industry spaces 
– and the industry clusters derived from them – are typically more intuitive and readily interpretable 
when based on establishment or frm portfolios compared to city or country portfolios. At the same 
time, both city-level and frm-level relatedness matrices perform well in predicting a city’s growth 
trajectory. This suggests that the best compromise between interpretability and predictiveness is 
provided by frm-based relatedness matrices. 

Second, when it comes to measuring density, we show that measures that are based on the mass 
of related industries in a city outperform measures that are based on the variety of related industries. 
This suggests that the principle of relatedness is closer related to Marshallian (i.e., specialization) 
than Jacobs (i.e., related variety) externalities. 

Third, the leading explanation for the principle of relatedness is that, by moving along trajectories 
of related diversifcation, cities can limit the number of new capabilities they need to acquire. 
However, this raises a puzzle: why is the principle of relatedness also predictive in sectors where 
capabilities play no primary role in location decisions, such as public services, resource-based 
industries and nontraded services? A capability-based explanation of the principle of relatedness 
can only be salvaged if we were to expand the notion of capability far beyond its common meaning. 
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For instance, capabilities would have to include aspects that are hard to change, such as a city’s 
geological conditions or population size. Related to this, we fnd that the principle of relatedness 
does not always provide plausible predictions of which industries will grow in a city. In fact, the 
principle of relatedness seems better suited to identify industries that are least likely to grow than 
those that are most likely to do so. 

Although none of this invalidates the principle of relatedness, it suggests that relatedness 
patterns should be interpreted with caution: inter-industry relatedness does not necessarily refect 
shared capabilities. Indeed, understanding why industries colocate is an important emerging area 
of research (e.g., Diodato et al., 2018; Ellison et al., 2010). In light of this, using the principle of 
relatedness to prioritize industries in industrial policy may be useful, but not without risks. A more 
conservative approach uses the principle of relatedness to detect anomalies in a city’s industrial 
portfolio. In some cases, these anomalies will be due to missing capabilities, in other cases, they 
may point to other reasons that hold back a city’s development. In either case, these anomalies 
reveal binding constraints to growth. We have proposed that such anomaly detection is best used 
as a component of a broader diagnostics approach. Such an approach would complement existing 
frameworks that help policy makers navigate the trade-of between feasibility and desirability of 
future development trajectories by focusing on which capabilities a city is lacking and what kind 
of public policy would help overcome existing development bottlenecks. 

Limitations and future research 
Some limitations of our study stand out. First, we have focused on the principle of relatedness 
in economic geography. That is, we studied its performance in predicting the presence and 
growth of industries in cities. This choice may explain the exceptional performance of city-level 
colocation-based relatedness matrices. Future research could analyze specifcations and predictive 
performance of the principle of relatedness applied to growth and diversifcation in establishments, 
frms and countries. 

Second, in spite of covering many important elements, specifcations can be improved in 
other ways. For instance, we did not consider set-based distance metrics, such as the Jaccard 
distance. Similarly, when residualizing industry-unit size data, we only considered industry and 
unit size, leaving aside other characteristics, such as diversity or productivity. Finally, to keep 
our estimation framework computationally feasible and allow for millions of repeated analyses, we 
only explored OLS regressions. Future research could analyze the statistical implementation of our 
model specifcations. 

Third, our results rely on a single database that was not originally intended to ofer a repre-
sentative depiction of the world economy, although it reliably describes the US economy. Further 
analysis in countries other than the U.S., using, for instance, administrative datasets – many of 
which record establishments, frms, industries and locations – could help corroborate or falsify the 
fndings in this study. 

Finally, our analysis focused on industrial development and growth in cities. However, it can 
be readily extended to technological and scientifc development using patent data or scientifc 
publication data. In both datasets, co-occurrences of technologies or academic felds can be studied 
at diferent levels of aggregation: from patents or journal articles to individuals, organizations, 
cities and countries. It would be particularly interesting to learn how these spheres interact by 
studying co-occurrences across domains. This would shed light on how diversifcation dynamics 
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interact across science, technology and the economy. 
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Bettencourt, L. M., Lobo, J., Helbing, D., Kühnert, C., and West, G. B. (2007). Growth, inno-
vation, scaling, and the pace of life in cities. Proceedings of the national academy of sciences, 
104(17):7301–7306. 

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of 
communities in large networks. Journal of statistical mechanics: theory and experiment, 
2008(10):P10008. 

Boschma, R., Balland, P.-A., and Kogler, D. (2015). The geography of inter-frm knowledge 
spillovers in biotech. The economics of knowledge, innovation and systemic technology policy, 
6:147–169. 

Boschma, R. et al. (2022). Evolutionary Economic Geography and Policy. Utrecht University, 
Human Geography and Planning. 

Boschma, R., Minondo, A., and Navarro, M. (2013). The emergence of new industries at the regional 
level in s pain: A proximity approach based on product relatedness. Economic geography, 
89(1):29–51. 

Bryce, D. J. and Winter, S. G. (2009). A general interindustry relatedness index. Management 
Science, 55(9):1570–1585. 

Christaller, W. (1933). Die zentralen Orte in Suddeutschland: Eine okonomisch-geographische 
Untersuchung uber die Gesetzmassigkeit der Verbreitung und Entwicklung der Siedlungen mit 
stadtischen Funktionen. Gustav Fisher. 

Cofano, M. and Foray, D. (2014). The centrality of entrepreneurial discovery in building and 
implementing a smart specialisation strategy. The centrality of entrepreneurial discovery in 
building and implementing a Smart Specialisation Strategy, pages 33–50. 

29 



Content, J. and Frenken, K. (2016). Related variety and economic development: A literature review. 
European Planning Studies, 24(12):2097–2112. 

Crane, L. D. and Decker, R. (2019). Business dynamics in the national establishment time series 
(nets). Technical Report 2019-034, Board of Governors of the Federal Reserve System (U.S.). 

Delgado, M., Porter, M. E., and Stern, S. (2010). Clusters and entrepreneurship. Journal of 
economic geography, 10(4):495–518. 

Delgado, M., Porter, M. E., and Stern, S. (2014). Clusters, convergence, and economic performance. 
Research policy, 43(10):1785–1799. 

Delgado, M., Porter, M. E., and Stern, S. (2016). Defning clusters of related industries. Journal 
of Economic Geography, 16(1):1–38. 

Diodato, D., Nefke, F., and O’Clery, N. (2018). Why do industries coagglomerate? how marshal-
lian externalities difer by industry and have evolved over time. Journal of Urban Economics, 
106:1–26. 

Ellison, G., Glaeser, E. L., and Kerr, W. R. (2010). What causes industry agglomeration? evidence 
from coagglomeration patterns. American Economic Review, 100(3):1195–1213. 

Engelsman, E., van Raan, A., and Division, M. o. E. A. T. H. T. P. (1991). Mapping of Technology: 
A First Exploration of Knowledge Difusion Amongst Fields of Technology. Beleidsstudies 
technologie economie. Centre for Science and Technology Studies, University of Leiden. 

Essletzbichler, J. (2012). Evolutionary economic geographies. The Wiley-Blackwell companion to 
economic geography, pages 183–198. 

Fan, J. P. and Lang, L. H. (2000). The measurement of relatedness: An application to corporate 
diversifcation. The Journal of Business, 73(4):629–660. 

Farjoun, M. (1994). Beyond industry boundaries: Human expertise, diversifcation and resource-
related industry groups. Organization science, 5(2):185–199. 

Florida, R., Mellander, C., and Stolarick, K. (2012). Geographies of scope: an empirical analysis 
of entertainment, 1970–2000. Journal of Economic Geography, 12(1):183–204. 

Foray, D., David, P. A., and Hall, B. (2009). Smart specialisation–the concept. Knowledge 
economists policy brief, 9(85):100. 

Frenken, K. and Boschma, R. A. (2007). A theoretical framework for evolutionary economic 
geography: industrial dynamics and urban growth as a branching process. Journal of economic 
geography, 7(5):635–649. 

Frenken, K., Van Oort, F., and Verburg, T. (2007). Related variety, unrelated variety and regional 
economic growth. Regional studies, 41(5):685–697. 

Glaeser, E. L. (2005). Reinventing boston: 1630–2003. Journal of Economic Geography, 5(2):119– 
153. 

30 



Gomez-Lievano, A., Patterson-Lomba, O., and Hausmann, R. (2016). Explaining the prevalence, 
scaling and variance of urban phenomena. Nature Human Behaviour, 1(1):1–6. 

Grabher, G. (1993). The weakness of strong ties; the lock-in of regional development in ruhr area. 
The embedded frm; on the socioeconomics of industrial networks, pages 255–277. 

Grillitsch, M. (2016). Institutions, smart specialisation dynamics and policy. Environment and 
Planning C: Government and Policy, 34(1):22–37. 

Guevara, M. R., Hartmann, D., Aristarán, M., Mendoza, M., and Hidalgo, C. A. (2016). The 
research space: using career paths to predict the evolution of the research output of individuals, 
institutions, and nations. Scientometrics, 109(3):1695–1709. 

Hausmann, R. and Klinger, B. (2009). Policies for achieving structural transformation in the 
caribbean. Private Sector Development Discussion Paper, 2. 

Hausmann, R., Klinger, B., and Wagner, R. (2008a). Doing growth diagnostics in practice: 
a’mindbook’. CID Working Paper Series. 

Hausmann, R. and Rodrik, D. (2003). Economic development as self-discovery. Journal of 
development Economics, 72(2):603–633. 

Hausmann, R., Rodrik, D., and Velasco, A. (2008b). Growth diagnostics. The Washington 
consensus reconsidered: Towards a new global governance, 2008:324–355. 

Hausmann, R., Stock, D. P., and Yıldırım, M. A. (2021). Implied comparative advantage. Research 
Policy, page 104143. 

Hidalgo, C. A. (2022). The policy implications of economic complexity. arXiv preprint 
arXiv:2205.02164. 

Hidalgo, C. A., Balland, P.-A., Boschma, R., Delgado, M., Feldman, M., Frenken, K., Glaeser, E., 
He, C., Kogler, D. F., Morrison, A., et al. (2018). The principle of relatedness. In International 
conference on complex systems, pages 451–457. Springer. 

Hidalgo, C. A. and Hausmann, R. (2009). The building blocks of economic complexity. Proceedings 
of the national academy of sciences, 106(26):10570–10575. 

Hidalgo, C. A., Klinger, B., Barab´ The product spaceasi, A.-L., and Hausmann, R. (2007). 
conditions the development of nations. Science, 317(5837):482–487. 

Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 
54(2):427–432. 

Hong, I., Frank, M. R., Rahwan, I., Jung, W.-S., and Youn, H. (2020). The universal pathway to 
innovative urban economies. Science advances, 6(34):eaba4934. 

Ingwersen, W. W., Li, M., Young, B., Vendries, J., and Birney, C. (2022). Useeio v2. 0, the us 
environmentally-extended input-output model v2. 0. Scientifc Data, 9(1):194. 

31 



Jacobs, J. (1969). The economy of cities. Random House. 

Leydesdorf, L. (2008). On the normalization and visualization of author co-citation data: Salton’s 
cosine versus the jaccard index. Journal of the American Society for Information Science and 
Technology, 59(1):77–85. 

Leydesdorf, L. and Vaughan, L. (2006). Co-occurrence matrices and their applications in infor-
mation science: Extending aca to the web environment. Journal of the American Society for 
Information Science and technology, 57(12):1616–1628. 

Martin, R. and Sunley, P. (2006). Path dependence and regional economic evolution. Journal of 
economic geography, 6(4):395–437. 

McNerney, J., Li, Y., Gomez-Lievano, A., and Nefke, F. (2021). Bridging the short-term and 
long-term dynamics of economic structural change. arXiv preprint arXiv:2110.09673. 

Mealy, P., Farmer, J. D., and Teytelboym, A. (2019). Interpreting economic complexity. Science 
advances, 5(1):eaau1705. 

Montresor, S. and Quatraro, F. (2017). Regional branching and key enabling technologies: Evidence 
from european patent data. Economic Geography, 93(4):367–396. 

Muneepeerakul, R., Lobo, J., Shutters, S. T., Goméz-Lievano, A., and Qubbaj, M. R. (2013). Urban´ 
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A Representivity of industry-region aggregates 

A.1 Country aggregates 
We use the 2011 wave of the D&B database to construct relatedness measures at the country level. 
To do so, we aggregate the number of employees to 3-digit SIC industries for all 235 countries 
presented in the database. Next, we select countries for which the D&B data ofer a reasonably 
accurate depiction of the industrial composition of the national economy. 

We compared the industrial employment composition for each country in the D&B data to 
data provided by the International Labor Organization, which provides estimates of country-level 
employment in 14 aggregated sectors based on ISIC rev.4 classifcation (the table of employment 
by sex and economic activity, ILO/ EMP 2EMP SEX ECO NB). After harmonizing industry 
classifcations, we calculate Pearson correlation coefcients, for industrial employment shares in 
both data sources. We furthermore calculate these correlations after excluding the agriculture 
sector, which may be dominated by self-employed workers, especially in developing economies 
and therefore be poorly covered by the D&B data. 

Next, we retain countries if: 

1. the country has at least 100,000 employees in the D&B data, 

2. the correlation of employment structure is at least 0.4 for all sectors, or at least 0.5 after 
excluding the agriculture sector, 

This selection results in the following list of included countries: 

AGO, ARE, ARG, AUS, AUT, BEL, BGD, BGR, BHR, BIH, BLR, BOL, BRA, CAN, 
CHE, CHL, CHN, CMR, COL, CRI, CYP, CZE, DEU, DNK, DOM, ECU, ESP, EST, 
ETH, FIN, FRA, GBR, GRC, GTM, HKG, HND, HRV, HTI, HUN, IDN, IND, IRN, 
ISL, ISR, ITA, JAM, JOR, JPN, KAZ, KHM, KOR, LBN, LKA, LTU, LUX, LVA, 
MAR, MDG, MEX, MKD, MLT, MMR, MOZ, MUS, MYS, NIC, NLD, NOR, NPL, 
NZL, PAK, PAN, PER, PHL, POL, PRT, PRY, QAT, ROU, RUS, SAU, SDN, SGP, 
SLV, SVK, SVN, SWE, SYR, THA, TUN, TUR, TWN, UKR, URY, USA, VEN, VNM, 
YEM, ZAF, ZMB 

Note that data from these countries is only used to calculate country-level relatedness matrices. 
All other analyses are run on the US segment of the D&B data only. 

A.2 US aggregates 
We compare the 2011 D&B data with 2011 US County Business Patterns (CBP) data for the 
analysis. Since CBP is released in NAICS classifcation but D&B 2011 in SIC codes, we harmonize 
the classifcations and aggregate to the city-industry level to check the representativity of total 
employment and employment shares. Results are reported below. 
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B Setting up the specifcation grid (Fig. 1) 

B.1 Prevalence 
The simplest way to quantify prevalence is by the size of the industry in the productive unit. 
In this paper, we measure size in terms of numbers of employees, possibly log-transformed to 
reduce distributional skew. For frms, cities and countries, we only use the primary industry 
codes of establishments. Next, we attribute all employment in that establishment to its primary 
industry when aggregating to higher level units. This avoids that all units mechanically pick up 
the same co-occurrences that are already present at the establishment level, allowing us to more 
clearly delineate diferent relatedness types. For establishments themselves, we impute the share 
of employees corresponding to each industry code, as described in the Appendix E. 

A downside of measuring prevalence in terms of raw size is that it doesn’t account for the fact 
that industries difer vastly in size, as do productive units. As a consequence, large industries and 
large productive units tend to dominate industry co-occurrences. To counteract this, prevalence 
is often expressed in relation to a benchmark. For instance, Hidalgo et al. (2007) use revealed 
comparative advantage18 (RCA, see Balassa, 1965) to determine which product categories have a 
signifcant presence in a country’s export basket. To be precise, the RCA benchmarks an industry’s 
relative size in a productive unit against its relative size in the overall economy: 

��� � ���/�� 
= �� ��� = , (B.1)�� ��/� 

where ��� is industry �’s employment in unit � and omitted subscripts indicate summations over 
the corresponding dimension. To reduce distributional skew, we can map this measure onto the 
interval [0, 1), using the following transformation (see, e.g., Nefke et al., 2017): 

��� �∗ �� ��� 
= �� � ∗ = (B.2)�� �� �� ��� + 1

, 

Alternatively, van Dam et al. (2023) propose taking logarithms: 

��� 

���� � ��� 
= log �� ��� = log = log , (B.3)�� �� ���� �� 

� � 

where ��� is the probability that a randomly drawn worker works in industry � and in unit �, �� the 
probability that the worker works in industry � and �� that she works in unit �.19 

Eq. (B.3) is known as point-wise mutual information (PMI). It provides a useful information-
theoretic interpretation of eq. (B.1): the (logarithm of the) RCA quantifes the amount of surprise 
in observing a local industry of size ��� when the nation-wide size of the industry is �� and the 
unit has a total employment of ��. This amount of surprise may ofer a more accurate signal of a 
productive unit’s underlying strengths than the size of the industry does. 

However, the PMI’s benchmark presupposes that industries scale linearly with the sizes of the 
productive units in which they are found. The notion of surprise in the PMI may therefore be rather 

18In economic geography, this index is better known as the location quotient. 
19To avoid problems related to values of log 0, we increase all employment counts by one unit before calculating 

RCAs. van Dam et al. (2023) show that this amounts to Bayesian estimation of the PMI with a uniform prior. 
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restrictive.20 More generally, it may be possible to predict the size of an industry in a productive 
unit from some general characteristics of the unit and the industry. This suggests to defne surprise 
against conditional expectations, given such characteristics. One way to form such conditional 
expectations is regression analysis, as proposed by Nefke and Henning (2013). We consider three 
such benchmarks: 

log ��� = � + �1 log �� + �2 log �� + ���� , (B.4)�� 

= �� + �� + ��� log ��� , (B.5)�� �˜ ��� � ˜� �− exp{��� �} exp ��� �̃ � ˆ � 
� ��� = ��� |�� = , ���� := log (��� + 1) − log ��� + 1 (B.6)�� ���! 

Prevalence is now defned as the residual of these regressions. To avoid the problem associated 
with the logarithm of 0, we increase ��� by 1 before taking logarithms in these equations. Diferent 
regression models yield diferent residuals: eq. (B.4) uses an OLS regression with the size of the 
industry and of the unit as explanatory variables; eq. (B.5) instead uses industry and unit fxed 
efects; and eq. (B.6) a Poisson regression with the same explanatory variables as eq. (B.4). 

Finally, many authors (e.g., Balland et al., 2019; Hidalgo et al., 2007; Muneepeerakul et al., 
2013; Rigby et al., 2022; Zhu et al., 2017) binarize prevalence indices to arrive at an index of 
industrial presence: a dichotomous variable that marks whether or not an industry has a signifcant 
presence in a productive unit. Although this procedure ignores some information, it suppresses 
distributional skew and noise in the tails of prevalence indices. To mimic this approach, we binarize 
prevalence metrics as follows: 

���� = 1 (��� > 0) ,�� 

��� � = 1 (����� > 1) ,�� � � 
���� ���� = 1 > 0 ,�� �� � � 
��� ��� = 1 > 0 ,�� �� � � 
���� ���� = 1 > 0 .�� �� 

where 1(.) is an indicator function that evaluates to 1 if its argument is true. Note that because 
because RCA* and PMI are monotonous transformation of RCA, they yield the same binarized 
versions. The same holds for ��� and log ��� 

B.2 Relatedness 
We can summarize prevalence information for an entire economy in (�� × ��) prevalence matrices, 
� , that collect industries’ prevalence across productive units. In the same way, we can use presence 
metrics to create (�� × ��) presence matrices, Π. Outcome-based relatedness indices transform 
these prevalence or presence matrices into (�� × ��) inter-industry relatedness matrices, Φ. 

20The urban scaling literature has shown that industries exhibit a range of scaling coefcients. For instance, small, 
complex industries often concentrate in large cities, whereas larger, more ubiquitous industries are spread across cities 
of diferent sizes (e.g., Balland et al., 2020; Gomez-Lievano et al., 2016; Hong et al., 2020; Youn et al., 2016). 
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Extracting relatedness matrices from prevalence matrices has a long history in the feld of 
scientometrics (e.g., Engelsman et al., 1991; Leydesdorf, 2008; Leydesdorf and Vaughan, 2006). 
Compared to this literature, We focus on approaches that have been used in research on diversif-
cation dynamics of regional economies. In this context, the principle of relatedness furthermore 
provides us with a clear task in which to evaluate their predictive performance. 

One set of methods operates directly on the presence or prevalence matrix. A column of such a 
matrix records how the employment of the corresponding industry is distributed across productive 
units. The similarity of diferent columns can now be regarded as a measure of the relatedness 
between the corresponding industries. We will consider two such measures. The frst is the 
correlation between pairs of columns (�, �) in a Π or � matrix as in Hausmann et al. (2021): 

�� � 
���� = 1 + 1

2 �����∈� (���, �� � ), (B.7) 
where �����∈� expresses the correlation across productive units �, which is then rescaled to map 
onto the interval [0, 1], and � the set of all productive units in the economy. Two industries are 
thus related if they exhibit correlated prevalence patterns across productive units. 

As an alternative, we consider the cosine similarity between prevalence vectors:Í 
���� �� 

�∈�
���� 1 
� � = 1 + 2 √ Í . (B.8)Í 

�2 �2 
�� �� 

�∈� �∈� 

A diferent set of methods frst constructs a so-called co-occurrence matrix: ∑ 
�� � = ��� � ��, (B.9) 

�∈� 

where ��� = 1(��� > �), with � some threshold value. Or, in matrix form: 

� = Π ′ Π, (B.10) 

where � is the co-occurrence matrix and Π ′ the transpose of presence matrix Π. 
Co-occurrence matrices count the number of times that two industries are present in the same 

productive units. Although they are typically based on binarized presence matrices, eq. (B.10) 
immediately suggests variants that use continuous prevalence information: 

�̃ = � ′ �, (B.11) 

where � represents the matrix of industry-unit prevalences and �̃ the matrix of co-prevalences. 
Co-occurrence matrices are typically normalized to account for the fact that some industries are 

present in more productive units than others. To do so, Hidalgo et al. (2007) propose calculating 
the minimum of two conditional probabilities: � � 

���� �� � �� � 
= min , , (B.12)� � �� � � 

where the frst fraction represents the probability of observing industry � in a productive unit, given 
that we had already observed industry � in the same unit, and the second term the probability of 
observing � given that we observed � in the unit. 
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We can rewrite eq. (B.12) as: 
���� �� � 

= . (B.13)� � max(��, � � )
This shows that eq. (B.12) efectively ignores the size of the smallest industry when cre-

ating a benchmark for the observed co-occurrences. This choice can be relaxed in a family of 
normalizations of the form: 

�� � 
�� = , (B.14)� � min(��, � � )� max(��, � � )1−� 

where 0 ≤ � ≤ 1. When � = 0, eq. (B.14) reduces to the minimum conditional probability of eq. 
(B.12), whereas � = 0.5 puts equal weights on the sizes of both industries.21 

Another intuitive normalization is analogous to the RCA transformation of eq. (B.1):22 

���� �� � 
� � = �, (B.15)

��� � 

To reduce distributional skew, we can apply the same transformation as in eq. (B.2), casting the 
relatedness value between 0 and 1. 

What all of these metrics have in common is that they leverage the information available in the 
co-prevalence, �̃� � , or co-occurrence, �� � , terms. In Appendix B.4, we show that this also holds for 
the cosine and correlation-based metrics, which turn out to be closely related to eq. (B.11). 

Finally, some authors (e.g., Muneepeerakul et al., 2013) argue that positive relatedness (i.e., 
industries that coincide surprisingly often in productive units) is fundamentally diferent from 
negative relatedness or unrelatedness (i.e., industries that are combined surprisingly little). Whereas 
the former points to the existence of economies of scope or shared capability requirements, the 
latter indicates that industries generate negative externalities for, or compete with, one another. 
Therefore, for each relatedness matrix, we also create a version in which we truncate relatedness. 
That is, we set all elements that correspond to negative relatedness to the value that represents 
neutral relatedness, therewith ignoring negative relatedness.23 

B.3 Density 
Relatedness matrices are typically rather sparse: whereas a small number of combinations of 
industries exhibit strong ties, most industries are unrelated or weakly related. In this sense, 
relatedness matrices describe for each industry a natural ecosystem of other industries that should 
help the industry thrive. By estimating the size of these ecosystems, we can get a sense of how well 
an industry fts the industrial mix of an entire local economy. 

To do so, Hidalgo et al. (2007) introduce a variable that they call density. The density of 
industry � in city �, ��� , is constructed as the weighted average prevalence of all other industries in 

21Small �s avoid high relatedness estimates that are driven by small industries, limiting the risk of spuriously high 
relatedness estimates. 

22See, for instance, Nefke et al. (2017) 
23In correlation- or cosine-based relatedness matrices, this value is equal to zero, in RCA-based relatedness matrices, 

the value corresponding to neutral relatedness equals one. Because negative relatedness is ill-defned for the conditional-
probability-based approaches, we do not pursue this truncation strategy there. Moreover, because the positive part of 
cosine and correlation measures already lies in the interval [0, 1] we do not need to rescale and recenter these measures 
as in eqs (B.7) and (B.8). 
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city �, where the weights express industry �’s relatedness to these other industries. Because most 
industries are weakly related or unrelated, some authors only use the � most related neighbors of � 
in this calculation (e.g. Hausmann et al., 2021). Taken together, this yields eq. (1), replicated here 
for convenience: ∑ Í�� � ��� = � �� . 

��� �≠�∈�� �≠�∈�� 

B.4 Relation between co-prevalence and co-occurrence metrics 
The conversion of (�� ×��) industrial prevalence or industrial presence matrices into (�� ×��) inter-
industry relatedness matrices relies on rescaling the intensity of co-prevalences or co-presences of 
industries across productive units. Measures may difer in the way they rescale such intensities, 
although they share commonalities at a more fundamental level. Here we illustrate this by comparing 
relatedness measures based on continuous prevalence information to their discrete counterparts. 
First, note that ����� in eq. (B.7) can be written as: 

� � � � � �Í Í Í1 1 1���� �� − ��� � �� �� �� �� 

����� 
�∈� �∈� �∈� 

= √ √ , (B.16)� � � ��2 �2Í Í Í Í1 �2 − 1 1 �2 1 
�� �� �� 

��� �� �� − 
�� 

� �� 
�∈� �∈� �∈� �∈� 

where �� denotes the number of diferent productive units in the economy. 
Also note that ���� in eq. (B.8): 

� � Í 
���� �� 

���� 
�∈� 

� � = √ Í Í , (B.17) 
�2 �2 
�� �� 

�∈� �∈� 

is essentially equivalent to ����� in eq. (B.16), except for the fact that ���� does not mean-center 
� � � � 

prevalences. 
Now compare these continuous co-prevalence metrics to the following expression for the binary 

co-occurrence approach of ��� � in eq. (B.15): 
� � Í 

���� �� ∑ 
���� �∈� 

= Í Í ������, (B.18)� � ������ � ����� 
�∈�,�∈�,�∈�

�∈�,�∈� �∈�,�∈� 

where � represents the set of all industries in the economy. 
The two expressions are very similar. Like the correlation approach, the main signal ofÍ

relatedness is derived from the term ���� ��, which expresses the co-prevalence or co-occurrence 
�∈� 

of two industries � and � . However, the cosine metric normalizes this co-prevalence by the raw 
second moments of the prevalence distributions of � and � , whereas the correlation metric normalizes 
by their centered second moments, i.e., their variances. 

40 



       
 

  

  
      

  

  

   
     

  

 
  

 
  

 

    

Í
The ��� � metric, in contrast, normalizes ���� �� by the frequency with which industry � and

� � 
�∈� 

� participate in co-occurrences.24 Therefore, it penalizes industries more heavily that tend to fnd 
themselves in large productive units, i.e., in productive units that host many industries. 

In fact, if we also feed dichotomous data into eq. (B.8) and if each productive unit holds exactly 
two industries – such that the number of co-occurrences in which an industry participates equals 
the number of productive units that host it – we arrive at almost the same rescaling factor as in eq. 
(B.15). To see this, note that we can write the denominator of eq. (B.15) as: ∑ ∑ 

������ � ����� = ��� � , (B.19) 
�∈�,�∈� �∈�,�∈� 

where �� denotes the number of productive units in which industry � is found, and of eq. (B.8) as: √∑ ∑ √ 
�2 �2 = ��� � . (B.20)
�� �� 

�∈� �∈� 

Therefore, diferences between relatedness metrics refect how we penalize large industries. Do 
we want to penalize industries with a large overall presence or prevalence, as in the correlation or 
cosine metric? This penalization can then be done in a scale-invariant way as in the correlation 
metric, which mean-centers the correction terms, or not, as in the cosine metric. Or do we want 
to penalize industries with large co-prevalences or many co-occurrences as in the ��� �? In this 

� � 
case, we account for the fact that some industries tend to be overrepresented in large productive 
units, whereas others are overrepresented in smaller productive units. Finally, we can choose the 
penalization to be asymmetric as in �� 

� � . 

Í 
24Note that the fnal term, ������, just rescales the metric for all industry pairs to ensure that a neutral 

�∈�,�∈ �,�∈ � 
level of co-occurrence coincides with a value of 1. 
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C Results and detailed recommendations 
Below, we describe a number of general conclusions that can be drawn from Tables 3 and 4. Based 
on these conclusions, we also propose a number of recommendations about how not to approach 
the principle of relatedness. 

C.1 Determinants of performance 
To determine which aspects of the specifcation grid have the largest impact on predictive perfor-
mance, we regress predictive performance on specifcation characteristics. Fig. C.1 shows how 
much each aspect contributes to the �2 of this regression. To determine these contributions, we 
attribute fractions of the �2 of a model that tries to explain performance from specifcation char-
acteristics to the diferent specifcation elements using dominance analysis. This procedure is an 
application of the Shapley value: it generates all 2� − 1 possible combinations of regressors and 
estimates the model ft for each combination. Next, for each variable, it asks by how much the 
average model ft drops if the variable is removed from all covariate sets of which it is a part. In 
this procedure, we code the main axes of our specifcation grid as dummy groups that are included 
or excluded as sets and use as a dependent variable the performance in employment or employment 
growth predictions. 

The most relevant aspect of the model specifcation is how we defne density and, in particular, 
how we defne the prevalence of an industry in a city in the construction of this variable. Other 
specifcation characteristics matter less, although for predicting growth, the choice of the productive 
unit also has a large impact. The least important aspect seems to be how many neighbors we consider 
when constructing density variables. 
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Figure C.1: Dominance analysis. 
Contribution of specifcation characteristics to the �2 of OLS regressions that explain model performance 
from specifcation characteristics. 
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Below, we analyze in greater detail how diferent specifcation elements afect the robustness 
of a specifcation’s performance. 

Productive unit. Regardless of binarization, the city level seems to be the most robust choice 
for relatedness calculations. The next best choice is the frm level. Country and establishment 
portfolios, in contrast, hardly ever result in highly robust specifcations. 

Interestingly, the performance advantage of city-based relatedness matrices is driven by their 
capacity to predict employment levels. If we only consider employment growth, most of the best-
performing specifcations rely on frm-based relatedness matrices: of all specifcations that rely 
on frm-based relatedness measures, 19.4% rank in the top decile when it comes to predicting 
growth patterns. For specifcations relying on city-based relatedness measures this share is 10.4%, 
comparable to the 10.2% for specifcations relying on establishment-based relatedness measures, 
but much better than the 0.1% for country-based relatedness measures. 

It is furthermore important to note that the city and frm levels give rise to qualitatively diferent 
industry-unit prevalence matrices. With over 80,000 frms and only 3.14 industries per frm (see 
Table 1), the frm-prevalence matrix is very sparse, featuring fewer than 1% non-zero elements. In 
comparison, with only 927 cities, over two thirds of the city-prevalence matrix consist of nonzero 
elements. In section 5.1, we show that these diferences also lead to qualitative diferences in 
the topology of the relatedness networks encoded in the relatedness matrices. In particular, frm-
based matrices seem more “structured” than their city-based counterparts. This may explain, why 
truncating relatedness matrices and limiting neighborhoods is particularly important when using 
city-based relatedness matrices – which feature many noisy elements – but less so when using frm-
or establishment-based matrices, in which elements are either zero or very large, leaving little doubt 
about whether or not two industries are related. Similarly, the implicit recommendation of Table 3 
of using small values of � reduces noisy links created by small industries. This recommendation is 
more forceful for city-based than for frm-based measures. 

Proximity metric. Regardless of the productive unit, the general approach of Hidalgo et al. (2007) 
to calculating relatedness works remarkably well. Hidalgo et al. rely on a binarized co-occurrence 
approach according to which an industry is present in a unit when its ��� > 1 and relatedness is 
defned using minimum conditional probabilities. This generalizes to the less restrictive versions 
of this principle introduced in eq. (B.13), as long as � is well below 0.5 to ensure that most 
emphasis is put on the probability that conditions on the presence of the larger of the two industries 
in each pair. In Appendix H, we analyze the choice of � more extensively. In general, �s should 
be kept relatively close to 0. However, when predicting growth rates, higher values, of around 0.2 
or 0.3, also often yield high performance. Only when relatedness is based on urban colocation 
patterns, defning proximity as the RCA of co-occurrences may perform even better. If, instead, 
continuous coprevalence information is used, matters are less clear-cut. For city coprevalences, 
using RCAs, provided that they are suitably transformed to reduce skew (as in RCA* or PMI), 
sufces. However, in frm portfolios, an industry’s prevalence is best determined as the residual 
from the OLS regression of eq. (B.4). This procedure yields good results across productive units. 
Moreover, further experiments (not shown) that use counties instead of cities as a regional unit 
also suggest that OLS regressions generate the most useful benchmark to determine an industry’s 
prevalence in a productive unit. 
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Density. The aspect that has the largest impact on a specifcation’s performance is how we assess 
the prevalence of an industry in a city when calculating densities. Table 4 shows that robustness 
is highest when density variables are based on continuous prevalence measures. In particular, 
comparing an industry’s size in a city to its predicted size based on the OLS models of eq. 
(B.4) works well. Furthermore, it is helpful to focus on positive relatedness and neglect negative 
relatedness, supporting the argumentation in Muneepeerakul et al. (2013). Finally, the number of 
closely-related “neighboring” industries is not terribly important, but ideally kept small, at between 
10 and 20% of the total number of industries in the economy. 

C.2 Recommendations 
The fndings in Tables 3 and 4 do not yield a single best specifcation for quantifying the principle 
of relatedness. However, we can identify a number of specifcation choices that should be avoided, 
because they generally perform poorly: 

When constructing inter-industry relatedness matrices 

• don’t defne an industry’s prevalence in a productive unit in terms of its raw size, but evaluate 
this size against a benchmark; 

• don’t use complicated models (i.e., with unit and industry fxed efects or Poisson models) to 
generate these benchmarks: simple OLS specifcations typically work well; 

• don’t use prevalence variables with highly skewed distributions such as the RCA, but instead 
transform these variables using, for instance, eq. (B.2); 

• don’t use values of � over 0.3 when using the generalized conditional probability approach 
for binary co-occurrence matrices; 

• don’t use country-level or establishment-level co-occurrences, but if available, co-occurrences 
at intermediate levels of aggregation. 

When constructing density variables 

• don’t use binarized prevalences; 

• don’t use the raw size of an industry in a city, but compare this size against a benchmark; 

• don’t use highly skewed prevalences; 

• don’t use (negative) unrelatedness, but only focus on industries that are (positively) related 
to the focal industry; 

Based on these recommendations, poor specifcations account for about 85% of the grid. Figure 
C.2 compares the performance of these poor specifcations to the remaining specifcations. Red 
lines show histograms over the performance percentiles of poor specifcations, green lines of all 
remaining specifcations. The fgure corroborates the recommendations formulated above: the 
remaining specifcations are much more likely to perform well in either prediction task than the 
ones we expect to perform poorly. 
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Figure C.2: Performance histograms. 
Red lines show relative frequencies across performance percentiles of specifcations that are expected to 
perform poorly: i.e, specifcations relying on (1) country or establishment portfolios to calculate relatedness 
(2) raw size or untransformed RCAs to measure industry-unit prevalence, (3) fxed efects or Poisson models 
to defne industry-unit prevalence benchmarks, (4) � > 0.3 in generalized conditional probability approaches, 
(5) binarized, raw size or untransformed RCAs in density calculations, (6) fxed efects or Poisson models to 
defne industry-city prevalence benchmarks (7) negative elements of relatedness matrices when calculating 
density. Green lines show relative frequencies for all other specifcations. 

D Defnition of four groups of industries 
We divide the 415 3-digit SIC codes into 4 groups that should difer in the extent to which their 
location patterns will follow local capabilities: 

Resource-based industries are mainly agriculture, forestry, fshing and mining related activities, 
which depend on the existence of local resources. This group consists of the following 3-digit 
industries: 

011, 013, 016, 017, 018, 019, 021, 024, 025, 027, 029, 071, 072, 074, 075, 076, 078, 
081, 083, 085, 091, 092, 097, 101, 102, 103, 104, 106, 108, 109, 122, 123, 124, 131, 
132, 138, 141, 142, 144, 145, 147, 148, 149 

Non-traded services include construction, transportation, various wholesale and retail trades. 
This group consists of the following 3-digit industries: 

152, 153, 154, 161, 162, 171, 172, 173, 174, 175, 176, 177, 178, 179, 401, 411, 412, 
413, 414, 415, 417, 421, 422, 423, 431, 441, 442, 443, 444, 448, 449, 451, 452, 458, 
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461, 472, 473, 474, 478, 491, 492, 493, 494, 495, 496, 497, 521, 523, 525, 526, 527, 
531, 533, 539, 541, 542, 543, 544, 545, 546, 549, 551, 552, 553, 554, 555, 556, 557, 
559, 561, 562, 563, 564, 565, 566, 569, 571, 572, 573, 581, 591, 592, 593, 594, 596, 
598, 599, 641, 651, 653, 654, 655, 721, 722, 723, 724, 725, 726, 729, 751, 752, 753, 
754, 762, 763, 764, 769 

Public-sector industries are mainly social and governmental activities. This group consists of 
the following 3-digit industries: 

801, 802, 804, 805, 808, 809, 821, 823, 829, 832, 833, 835, 836, 839, 861, 862, 863, 
864, 865, 866, 869, 881, 899, 911, 912, 913, 919, 921, 922, 931, 941, 943, 944, 945, 
951, 953, 961, 962, 963, 964, 965, 966, 971, 972 

All remaining industries were classifed as traded industries. They mainly consist of manufac-
turing industries and tradable services. This group consists of the following 3-digit industries: 

201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 221, 222, 223, 224, 
225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 
244, 245, 249, 251, 252, 253, 254, 259, 261, 262, 263, 265, 267, 271, 272, 273, 274, 
275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 289, 291, 295, 299, 301, 
302, 305, 306, 308, 311, 313, 314, 315, 316, 317, 319, 321, 322, 323, 324, 325, 326, 
327, 328, 329, 331, 332, 333, 334, 335, 336, 339, 341, 342, 343, 344, 345, 346, 347, 
348, 349, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 
367, 369, 371, 372, 373, 374, 375, 376, 379, 381, 382, 384, 385, 386, 387, 391, 393, 
394, 395, 396, 399, 481, 482, 483, 484, 489, 501, 502, 503, 504, 505, 506, 507, 508, 
509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 601, 602, 603, 606, 608, 609, 611, 
614, 615, 616, 621, 622, 623, 628, 631, 632, 633, 635, 636, 637, 639, 671, 672, 673, 
679, 701, 702, 703, 704, 731, 732, 733, 734, 735, 736, 737, 738, 781, 782, 783, 784, 
791, 792, 793, 794, 799, 803, 806, 807, 811, 822, 824, 841, 842, 871, 872, 873, 874 
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��������� ����� �� 
1 1 1.000 
2 1 0.803 
2 2 0.197 
3 1 0.735 
3 2 0.202 
3 3 0.063 
4 1 0.686 
4 2 0.203 
4 3 0.082 
4 4 0.029 
5 1 0.647 
5 2 0.205 
5 3 0.089 
5 4 0.042 
5 5 0.017 
6 1 0.610 
6 2 0.205 
6 3 0.098 
6 4 0.050 
6 5 0.025 
6 6 0.012 

Table E.1: Estimation of industrial employment shares within establishments level 

E Distributing employees across an establishment’s industries 
The D&B database includes up to six diferent industry codes for each establishment that are listed 
in decreasing order of importance. However, the database does not ofer an estimate of the number 
of employees associated with each industry. To impute such an estimate, we proceed as follows. 

For establishments with only one industry code, we associate the total number of employees 
in the establishment with that industry code. For establishments with multiple industry codes, we 
need to estimate a function �� = � (�������� �, �����) that maps the number of industries �������� � Í
and the rank of an industry code ����� to a ratio ��, such that � �� = 1. For example, for an 
establishment with a total number of employees � and three industry codes, the mapping would 
require that we estimate �1 = � � (3, 1), �2 = � � (3, 2) and �3 = � � (3, 3). 

To complete this task, we assume that the distribution of employment across industries at the 
establishment level is similar to that at the frm level. That is, we estimate the function above from 
the shares of employees for primary industry codes in US frms. Take � (3, 1) as an example, the 
ratio is estimated as the normalized geometric mean of the largest employment shares in frms with 
three diferent primary industry codes. The results of this estimation are shown in Table E.1. 
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F Comparing relatedness matrices 
Figure F.1 compares relatedness matrices across specifcations by plotting the correlations between 
all diferent relatedness matrices that were created in the specifcation grid. Specifcations are 
ordered along both axes frst by the productive unit in which relatedness was measured and then by 
other aspects of the specifcation. 

The large diagonal blocks show that diferent productive units yield diferent relatedness matri-
ces, suggesting that they identify diferent types of economies of scope. Within a productive unit, 
there are three pronounced smaller blocks. The frst two correspond to binarized specifcations, 
the third to continuous specifcations. Moreover, the block in the middle is quite distinct from the 
other two blocks. This block contains binarized specifcations, based on residuals from frst fxed 
efects and then a simple OLS regression. 

The exact details of the specifcation matter less and less as we move from establishments 
to higher-order productive units. At the country level, relatedness matrices become very similar 
regardless of the specifcation used. 
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Figure F.1: Pairwise Pearson correlation of relatedness matrices 
Observation (�, �) represents the correlation between two vectors that stack the columns of the relatedness 
matrices associated with specifcation � and � . Relatedness matrices are frst grouped by the productive 
entities in which industry combinations are observed. Within these groupings, specifcations are collected 
by the defnition of industry prevalence, the metric used to convert coprevalence or co-occurrence information 
into a relatedness matrix and fnally the exact parameter settings used therein. 

G Additional results on density 
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productive unit (1) (2) 
Efect of densi 

(3) (4) 
ty on employment levels 

(5) (6) 

establishment 0.116 0.114** 0.452*** 
(0.0606) (0.0440) (0.0664) 

frm 0.630*** 0.207*** 0.592*** 
(0.0538) (0.0429) (0.0573) 

city 0.799*** 0.733*** 0.795*** 
(0.0260) (0.0284) (0.0342) 

country 0.372*** 0.267*** 0.129*** 
(0.0218) (0.0229) (0.0136) 

� 384,705 384,705 384,705 384,705 384,705 384,705 
�2 0.739 0.786 0.788 0.733 0.747 0.787 

Efect of density on employment growth 
establishment 0.00220* 0.00378* 0.00448* 

(0.000947) (0.00174) (0.00180) 

frm 0.00777*** 0.00728*** 0.00773*** 
(0.00137) (0.00147) (0.00135) 

city 0.00583** 0.00428* 0.00573** 
(0.00188) (0.00192) (0.00193) 

country 0.00450*** 0.00297** 0.00358** 
(0.00106) (0.00108) (0.00125) 

� 245,395 245,395 245,395 245,395 245,395 245,395 
�2 0.068 0.066 0.069 0.066 0.069 0.066 

Table G.1: Redundancy and complementarity in pairs of density variables (preferred contin-
uous specifcation) 
Standard errors in parentheses, *: � < 0.05, **: � < 0.01, ***: � < 0.001. Upper panel: regression 
analysis of employment levels, controlling for industry and city size. Lower panel: regression analysis of 
employment growth, controlling for mean reversion efects, industry and city size. The coefcients refect 
the efects of density measured using the productive units listed in the frst column. All density measures are 
based on our preferred continuous specifcation. 

H Grid search fgures 
In this section, we plot distributions of performance statistics for diferent choices of parameter � 
in the conditional probability metric and for diferent numbers of neighbors in the construction of 
the density measure. 
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Establishment Firm 
Employment levels 

City Country 

density���� 0.663*** 0.829*** 1.154*** 0.338*** 
(0.128) (0.0619) (0.0531) (0.0498) 

density��� -0.108 -0.161* -0.334*** 0.194* 
(0.155) (0.0698) (0.0784) (0.0756) 

� 384705 384705 384705 384705 
�2 0.715 0.740 0.788 0.710 

Employment growth 
density���� 0.00376 0.00672*** 0.0112*** 0.0130*** 

(0.00207) (0.00169) (0.00282) (0.00170) 
density���� 0.00238 0.00319 -0.00442 -0.00875*** 

(0.00201) (0.00208) (0.00355) (0.00261) 
� 245395 245395 245395 245395 
�2 0.064 0.069 0.065 0.065 

Table G.2: Related variety versus mass of related activity (preferred continuous specifcation). 
Standard errors in parentheses, *: � < 0.05, **: � < 0.01, ***: � < 0.001. Upper panel: regression analysis 
of employment levels, controlling for industry and city size efects. Lower panel: regression analysis of 
employment growth, controlling for mean reversion, industry and city size efects. The coefcients refect 
the efects of density based on relatedness measured in the productive units listed in the columns, where 
density���� uses continuous information on an industry’s prevalence in a city, and density��� continuous 
information on whether or not an industry is signifcantly present in the city. 

Industry spaces 
In this appendix, we visualize industry spaces for each productive unit type using relatedness 
matrices from our preferred binary and continuous specifcations. To do so, we follow the approach 
of Hidalgo et al. (2007) to create a network visualization from the dense relatedness matrix. That 
is, we frst calculate the maximum spanning tree to extract the backbone of the relatedness matrix, 
and then add links with high relatedness until the number of edges equals three times the number 
of nodes. Nodes in the networks represent industries, ties strong relatedness connections. Nodes 
are furthermore colored by the high level sectors to which their industries belong. 
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Figure H.1: Conditional probability. 
The graphs show the out-of-sample �2 for specifcation that rely on eq. (B.14) to estimated relatedness 
for diferent values of �, where � = 0 corresponds to the minimum conditional probability approach in 
Hidalgo et al. (2007). The boxes display the interquartile range, the whiskers extend from the 10th to the 90th 

percentile. The gray circles mark the �2 of the fve best specifcations. 
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Figure H.2: Number of neighbors. 
The graphs show the out-of-sample �2 for diferent numbers of neighbors considered in the calculation 
of density, ���� . The boxes display the interquartile range, the whiskers extend from the 10th to the 90th 

percentile. The gray circles mark the �2 of the fve best specifcations. 
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Figure I.1: Industry spaces - binary. 
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Figure I.2: Industry spaces - continuous. 
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