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ABSTRACT 

We estimate a multi-country multi-sector New Keynesian model to quantify the drivers of 
domestic inflation during 2020–2023 in several countries, including the United States. The model 
matches observed inflation together with sector-level prices and wages. We further measure the 
relative importance of different types of shocks on inflation across countries over time. The key 
mechanism, the international transmission of demand, supply and energy shocks through global 
linkages helps us to match the behavior of the USD/Euro exchange rate. The quantification 
exercise yields four key findings. First, negative supply shocks to factors of production, labor and 
intermediate inputs, initially sparked inflation in 2020–2021. Global supply chains and 
complementarities in production played an amplification role in this initial phase. Second, 
positive aggregate demand shocks, due to stimulative policies, widened demand-supply 
imbalances, amplifying inflation further during 2021–2022. Third, the reallocation of 
consumption between goods and service sectors, a relative sector-level demand shock, played a 
role in transmitting these imbalances across countries through the global trade and production 
network. Fourth, global energy shocks have differential impacts on the US relative to other 
countries’ inflation rates. Further, complementarities between energy and other inputs to 
production play a particularly important role in the quantitative impact of these shocks on 
inflation. 
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“At the outset, many forecasters and analysts ... viewed the sudden upturn in inflation as mostly a 

function of pandemic-related shifts in the composition of demand, a disruption of supply chains, and a sharp 

decline in labor supply. The resulting supply and demand imbalances led to large increases in the prices of a 

range of items most directly affected by the pandemic, especially goods ... But in the fourth quarter of 2021, 

the data clearly changed ... with only gradual progress in restoring global supply chains, and relatively few 

workers rejoining the labor force ... A new shock arrived in February 2022, when Russia invaded Ukraine, 

resulting in a sharp increase in energy and other commodity prices ... it was clear that bringing down inflation 

would depend both on the unwinding of the unprecedented pandemic-related demand and supply distortions 

and on our tightening of monetary policy, which would slow the growth of aggregate demand, allowing supply 

time to catch up.” 

Remarks from Jay Powell, 24th Jacques Polak Annual Research Conference, IMF, 2023. 

1 Introduction 

During the last three years, advanced countries have experienced inflation rates not seen in four 

decades. The underlying causes of this inflationary episode are still debated. This paper develops 

a New Keynesian open-economy model to quantify the key drivers of aggregate inflation across 

several countries, notably the United States and the Euro Area. Our quantification exercise based 

on the model matches observed aggregate inflation experiences along with sector-level price and 

wage changes for durables, non-durables, services, and the energy sector. 

The model allows for a multitude of shocks at the sector and aggregate levels. Accounting for 

micro supply and demand shocks has important implications for the employment/output-inflation 

trade-off both at the sector- and aggregate levels, since this trade-off can be worse when negative 

supply shocks and positive demand shocks coincide. In this sense the framework in our paper is 

similar to those developed in the closed-economy papers of Baqaee and Farhi (2022) and Rubbo 

(2023a). By extending the model to the open economy, we highlight important features in the 

transmission of shocks across the world that not only help us match the observed inflation rates in 

several countries along with exchange rate movements, but also allows us to quantify the impact of 

shocks stemming from China lockdown policies and the Russia-Ukraine War on prices and wages 

in the US and Euro area. 

The estimation of our global structural macroeconomic network model allows us to quantify the 

different forces that drove the pandemic-era inflation at different times in different countries during 

the last three years, while showing the importance of interconnections across sectors and countries. 

We quantify the following narrative of three distinct phases in the rise of global inflation, as also 
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highlighted in our opening quote. In the early phase of 2020–2021, supply shocks arising from 

pandemic-induced scarcity in factors of production, such as constrained imported intermediates 

and domestic labor, sparked inflation. This period was characterized by local and global supply 

chain bottlenecks, rising factor costs including prices of imported intermediate inputs together with 

slack in domestic labor markets. The initial rise in product prices – also highlighted by Blanchard 

and Bernanke (2023) and Lorenzoni and Werning (2023) – is an important feature of this episode 

that our model matches. Further, the model is able to match the observed rise in real wages during 

early 2020, before they fell in 2021, given the early negative labor supply shock. 

There were also large fiscal packages and loose monetary policy during the first phase, especially 

in advanced countries. The fiscal packages aimed at mitigating the economic hardship of higher 

unemployment came in different phases and lasted into 2022. The aggregate demand shock resulting 

from easy policies intensified the original supply chain bottleneck problem by stimulating demand 

in a low supply world, leading to rising inflation during the second phase over 2021–2022.1 The final 

phase (2022–2023) was characterized by the Russian invasion of the Ukraine further intensifying 

inflation given the impact on energy prices, particularly in Europe. 

By extending the closed-economy contribution of Baqaee and Farhi (2022) to multiple countries, 

we link the fall in sector-specific labor supply (and other factors of production), domestic or foreign, 

to aggregate output, wages and inflation in all countries. The model incorporates a global produc-

tion network, which allows for trade in intermediate goods and complementarities in production.2 

The emphasis on factor markets with inelastic factor supply and factor scarcity is combined with 

several other ingredients: (i) standard aggregate demand shocks (e.g., fiscal stimuli and easy/tight 

monetary policy) and downward nominal wage rigidity, (ii) sector-specific demand shocks, and (iii) 

energy sector-specific TFP shocks, fed through Russian energy sector, which capture energy price 

shocks due to the war. Our quantitative exercises identify the contribution of each of these shocks 

to domestic inflation. 

The baseline analysis includes several other features that help match the data. First, given 

the short-run complementarity between factors of production in the data (e.g., Boehm, Levchenko, 

1As di Giovanni, Kalemli- ¨ Ozcan, Silva, and Yıldırım (2023) show, the three fiscal package in the US drives 60 
percent of the US inflation during 2021–2022. The dates of the US fiscal packages are December 2020, March 2021, 
December 2021. 

2Ç akmaklı, Demiralp, Kalemli- ¨ Ozcan, Yeşiltaş, and Yıldırım (2021) also extends Baqaee and Farhi (2022) into 
multiple countries, focusing on real output losses through production network without nominal rigidities. 
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and Pandalai-Nayar, 2023), the effect of any input shortage in a given country-sector is amplified 

to production worldwide in model calibrations that use data-consistent elasticities. This feature is 

particularly important in terms of the complementarity between oil as an input and domestic labor, 

as also highlighted by Gagliardone and Gertler (2023). Second, we assume segmented factor markets 

(labor and capital) where reallocation across sectors is limited, consistent with the data during this 

period.3 Third, using information on cross-border ownership of factors we solve for model-consistent 

exchanges rates and trade balances, which track their observed values in the data.4 The model 

is non-linear and needs to be solved computationally. However, like Baqaee and Farhi (2022) our 

framework allows for an analytical first-order approximation solution for each country’s inflation 

rate, which, differently than Baqaee and Farhi (2022), in an open-economy setting is a function of 

shocks in all countries and sectors. 

The model performs well in matching the observed inflation in the US and the Euro Area 

during 2020–2023. The quantification exercise is reported for an aggregated four-region-four-sector 

world, given the limitations in real-time sector-level data from several countries: the US, Euro 

Area, Russia, and an aggregate of the rest of the world, which includes China and that we refer 

to as “China+”. We collect data on sector-level employment and consumption shares, aggregate 

expenditures, and energy prices at the quarterly level across countries in order to construct our 

series of shocks. We combine these data with detailed pre-pandemic cross-country input-output 

tables in order to first solve the model at an initial steady-state and then shock the steady-state 

each quarter with sector-level and aggregate shocks and solve for prices, wages, rental rates of 

capital and output for all country-sectors in the world together with exchange rates. Note that the 

non-linear model solves for all prices and quantities, including model-implied “new” global network 

(expenditure) shares under shocks.5 We then compute year-on-year inflation on aggregate prices 

at each quarter as the log-difference between a given quarter relative to the same quarter in the 

previous year. 

3As shown by Fernald and Li (2022), during 2020-2022, the contribution of labor reallocation from low to high 
wage/productivity sectors is very small, 0.18 percent, whereas labor productivity grew 1.1 percent. 

4Our approach is in the spirit of Dekle, Eaton, and Kortum (2007, 2008) focusing on capital (factor income) inflows, 
but different than Baqaee and Farhi (Forthcoming), who accommodate standard exchange rate determination with 
full wage rigidity for tariff shocks. See also Gourinchas et al. (2021) who solves for changes in current accounts under 
fixed exchange rates. 

5Both the OECD and the U.S. BEA data on network input-output shares come with 5-7 year lag and hence actual 
network expenditure shares in 2020-2021 will not be known until 2025-2027. 
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The model is solved each quarter by feeding in shocks, defined relative to a pre-pandemic period. 

We collect the post-shock CPI levels each period and use these to calculate model-based inflation 

rates between 2020Q1-2022Q4. Thus, while we do not have persistence in the model, we are still 

able to map out a path of inflation over the time series. To summarize how well model-generated 

inflation rates compare to the data at the annual level, we calculate quarter-specific year-on-year 

inflation rates for each quarter in a given year and then take the arithmetic average of these numbers 

for the given year. The baseline model generates inflation rates of (in percent) 2.30, 8.61, and 6.37 

in the United States for 2020, 2021, and 2022, while actual headline inflation during these years 

was 1.23, 4.98, and 7.72 percent, respectively. Thus, our model predicted-inflation rates broadly 

match those observed in data on average. 6 

Next, to quantify the sources of inflation, we feed each shock into the model separately to cal-

culate their contribution to inflation. This exercise yields an interesting historical decomposition 

of the drivers of inflation. For example, for the US in 2020, allowing for only sector-level supply 

shocks would have generated 2.62 percent inflation (higher than reality); including only sector-level 

demand shocks would have generated 0.93 percent inflation (lower than reality); including only 

aggregate demand shocks would have generated −0.28 percent inflation (much lower than reality), 

and having only energy shocks would have led to −0.32 percent inflation. These findings suggest 

that supply shocks were more important initially and aggregate demand shocks were disinflation-

ary. In 2021, sector-level supply shocks would have generated an inflation rate of −1.74 percent; 

only sector-level demand 0.65, only aggregate demand 7.88, and only energy 1.12, suggesting that 

aggregate demand shocks were more important in 2021 given that actual inflation was approxi-

mately 5 percent. During 2022, sector-level supply shocks only would have generated an inflation 

rate of −1.07 percent, sector-level demand an inflation rate of −0.18 percent, aggregate demand 

an inflation rate of 7.57 percent, and energy an inflation rate of 1.69 percent. Therefore, actual 

inflation would have been much higher without the improvement in supply chains that acted as 

a disinflationary force (measured via the sector-level supply shock) in the last part of 2021 and 

throughout 2022. 

Turning to the results for the Euro Area, the model also performs well in matching the trends 

6The model overshoots 2021 inflation, but as discussed in Section 4, this is due to base effects impact of the 
massive rebound arising from the reopening of the economy. 
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in actual inflation, as well as highlighting the importance of energy shocks for the European ex-

perience. The baseline model generates inflation rates of −2.67, 7.27, and 8.13 percent for 2020, 

2021, and 2022, respectively. Inflation in the data was 0.11, 2.84, and 8.43 percent over the same 

period. The overall story of the shocks’ contribution is similar to the United States but with 

some important differences, especially for the role of energy shocks. During 2020, only sector-level 

supply shocks would have generated 1.59 percent inflation (again much higher than reality), only 

sector-level demand would have generated 0.11, only aggregate demand −3.10, and only energy 

−0.56 percent inflation, respectively. These findings suggest that a combination of sector-level 

supply and aggregate demand shocks can help to rationalize the low inflation during this year. In 

2021, the contributions of the different shocks were −0.38, −0.21, 5.06, and 1.9 percent, respec-

tively, suggesting that aggregate demand and energy played important roles in driving Euro Area 

inflation. Finally, the story in 2022 is similar to that of 2021. In particular, the contributions of 

sector-level supply, sector-level demand, aggregate demand, and energy shocks were −1.48, −0.18, 

8.98, and 2.81 percent, respectively, suggesting again a predominant role for shocks to the energy 

sector playing an important in explaining Euro Area inflation. 

The model also allows us to examine the quantitative importance of complementarities in pro-

duction. These complementarities play an important role in the response of prices to shocks insofar 

as these elasticities dictate how much a fall in the supply of goods from one country-sector can 

be substituted with varieties from other countries. When these elasticities are low, the impact of 

international shocks become more pronounced. 

The baseline quantification exercise also produces exchange rate and current account dynamics 

that are consistent with the data. We solve for these variables as follows. The model features 

a downward nominal wage rigidity that is expressed in each country’s local currency, while the 

world equilibrium must be solved in a common currency. To solve the model, we must make 

one further assumption that households in each economy hold claims on income streams from 

trading partners, which drives current account movements after shocks hit the economy. With this 

additional assumption, the model delivers bilateral nominal exchange rates so that markets clear 

both domestically and internationally at steady-state and after the economies are hit by shocks. 

While not the main focus of our analysis, it is reassuring that the model-generated USD/euro 

exchange rate dynamics match movements of the actual USD/euro exchange rate in the data: the 
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correlation between the annual percentage change of the model and data exchange rate is 0.93. 

This result is somewhat surprising given that the model ignores financial market dynamics, such 

as “flight to safety” at the onset of the pandemic, that many revert to explain appreciation of the 

USD early on, which later intensified with the tight monetary policy stance. 7 Our model can match 

the observed USD appreciation due to the large aggregate demand shock in the US via the fiscal 

stimulus that decreased savings, widened the current account deficit thus increasing capital inflows 

to the US and appreciating the USD.8 

International spillovers operate through several channels in amplifying or mitigating inflation 

at home in the model. Using a first order approximation, we formally show – see Proposition 1 in 

Section 2 – that the degree to which supply shocks spillover over from foreign countries to impact 

domestic inflation depends on domestic consumption’s exposure to foreign factors of production. 

This exposure depends both on the consumption of foreign final goods, but also on the degree 

to which any consumption good embeds foreign factors of production. In particular, final goods 

are produced using intermediate goods, which may be sourced from multiple countries and pass 

through several stages of production. Therefore, the degree to which domestic consumption depends 

on foreign factors in turn depends on network effects arising from global production linkages, which 

will amplify shocks to foreign factors. This dependency varies greatly from country to country 

– for example, the US shows relatively less dependency on foreign factors compared to the Euro 

Area.9 This mechanism also connects labor market to other factors of production. For example, if 

there is Keynesian unemployment in the foreign country due to downward wage rigidity, this will 

be an inflationary cost-push at home as home global factor usage goes down via complementarity. 

However, if a foreign aggregate demand shock remedies the Keynesian unemployment problem 

(foreign fiscal stimulus), then inflation goes down at home. Hence, fiscal stimulus in the U.S. 

might increase inflation in the U.S. but decrease it in the rest of the world, if the U.S. labor 

market is demand constrained and there is downward nominal wage rigidity. Finally, exchange 

rates mitigate the impact of the transmission of aggregate demand shocks across countries. In fact, 

7For example, models that try to capture USD appreciation in bad times work through a convenience yield/safety 
premium (e.g., Kekre and Lenel, 2023), which we do not have. 

8We do not have explicit easy monetary policy in 2020-2021 and tight policy in 2022, but we have it implicitly via 
aggregate expenditures. 

9Europe’s higher energy dependence from Russia vis-a-vis the US is a typical example, however for different factors 
of production these dependencies might differ across countries and hence the entire network needs to be taken into 
account for the precise measurement of international spillovers. 
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if wage rigidity is not binding (will be under positive demand shocks), the cross-country effects of 

aggregate demand shocks on inflation rates are completely offset by exchange rate adjustments, via 

the standard Mundell-Fleming channels. 

Related Literature 

Our paper relates to the rapidly growing literature studying the inflation of 2021–2023. As 

in closed economy papers of Baqaee and Farhi (2022), Rubbo (2023b), Guerrieri et al. (2021), 

Lorenzoni and Werning (2023), we emphasize a multi-sector approach to modelling pandemic-

era inflation, input-output linkages, production complementarities and downward nominal wage 

rigidities. As in Gagliardone and Gertler (2023) and Blanchard and Bernanke (2023), we highlight 

the role of oil shocks, product price increases and labor market tightness. As in Comin, Johnson, 

and Jones (2023), Amiti, Heise, Karahan, and Şahin (2023) and Ferrante, Graves, and Iacoviello 

(2023), we emphasize the role of global supply chains. We differ from these papers in that we 

allow for a full global trade and production network input-output structure, so that all sector 

and aggregate price changes are endogenous to shocks across country-sectors in the world. These 

papers instead limit their analysis to two sectors in a small open economy setting and, hence, have 

to take foreign import prices as exogenous and since their shocks to labor are aggregate, they will 

miss the interaction between labor market dynamics in services vs good sectors and prices in these 

sectors. We also relate to studies that emphasize a non-linear Phillips curve, such as Eggertson 

and Kohn (2023) and Benigno and Eggertsson (2023), that link the slope of the non-linear Phillips 

curve to labor market slackness and tightness. In contrast to these models, our non-linear sector-

level approach can account for variety of shocks explaining inflation at different times in different 

countries together with the co-existence of slack and tight labor market sectors. 

Our paper fits in the literature that focuses on inflation and monetary policy with input-output 

linkages such as Basu (1995), Erceg et al. (2000), Aoki (2001), Woodford (2003), Blanchard and Gali 

(2007), La’O and Tahbaz-Salehi (2022), Carvalho (2006), Klenow and Kryvtsov (2008), Nakamura 

and Steinsson (2008, 2010, 2013), Carvalho and Nechio (2011), Bouakez et al. (2014), Pasten et al. 

(2020, Forthcoming), Castro (2019), Höynck (2020), Baqaee and Farhi (2022) and Rubbo (2023a). 

Our difference is open economy and quantification of the pandemic-era inflation. We do not study 

optimal monetary policy. There is also reduced-form empirical studies that seeks to identify the 
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different drivers of inflation with sign restrictions in VAR such as Jordá, Liu, Nechio, and Rivera-

Reyes (2022), Shapiro (2022a,b), and Jordá and Nechio (2022). 

The contribution of our work over the existing literature that tries to understand the Covid-era 

inflation is the ability to quantify the role of four sets of shocks (aggregate and sector-level) to 

the different phases of inflation over 2020–2023 and study the transmission of these shocks across 

sectors and countries given our global trade and production network structure. 10 The model’s 

micro-structure is rich enough to study how different assumptions on production and consumption 

substitutability impact the contribution of different shocks to inflation, both domestically and 

abroad, which is central to the recent de-globalization debate. 

Outline of the Paper 

Section 2 outlines the multi-country multi-sector model that we use to quantify the drivers of 

inflation. Section 3 describes the data and shock construction that we use for the quantification 

exercises. Section 4 presents the quantitative results. Section 5 concludes. 

2 Model 

We extend the Baqaee and Farhi (2022) model to an open-economy setting by incorporating cross-

country and cross-sector input output linkages, as well as endogenous exchange rate and current 

account adjustments. The model allows for a rich set of shocks including country-level aggregate 

demand shocks, country-sector level demand shifts, and country-sector level factor supply and 

productivity shocks. 

Similar to Baqaee and Farhi (2022), we simplify the dynamics of the model with the assumption 

that all countries are at steady-state levels of production and consumption before and after shock 

periods. In each shock period, the households and producers expect to return to this steady state. 

We distinguish the variables related to the steady state with an asterisk (∗). 

We denote countries with indices m, n = 1, . . . , N , where N is the number of countries. We 

use i, j, k = 1, . . . , J as sector indices. A sector in a country is identified by a pair of indices 

corresponding to countries and sectors, respectively. 

10The policy extension of our paper focusing only on US and Europe in 2021 that was prepared for the 2022 
ECB-Sintra conference embeds a fixed-exchange rate regime. 
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2.1 Households 

We assume that households are Ricardian and have perfect foresight. Households in country n 

makes their consumption decisions by maximizing the following inter-temporal utility: 

max 
{Cn,C∗ 

n} 
(1 − βn) log Cn + βn log C ∗ 

n, (1) 

where Cn and C∗ 
n are the consumption bundles for the shock period and the future, respectively. 

The βn parameter weighs households’ time preferences and we assume an inter-temporal elastic-

ity of substitution of 1 (therefore the Cobb-Douglas nature of the inter-temporal utility). While 

optimizing their consumption decision, households respect their inter-temporal budget constraints: 

PnCn + 
P ∗ 
n C ∗ 

n 

1 + in 
= In + 

I ∗ 
n 

1 + in 
, (2) 

where Pn (P
∗
n) is the price of the consumption bundle and In (I

∗
n) is nominal income in the current 

(future) period, and in is the nominal interest rate in the shock period. 

Households’ final consumption bundle is a Cobb-Douglas aggregate over sector-level consump-

tion bundles: 

Cn = 
J 

j=1 

C 
ΩC 

n,j 
n,j with 

J 

j=1 

Ω C 
n,j = 1, 

where Cn,j denotes the country n’s consumption bundle of sector j’s goods (or services), and 

ΩC 
n,j ≥ 0 represents the household’s consumption share of this sector. The sector-level consumption 

bundles are in turn aggregates of varieties of goods from different countries in a given sector. Let 

Cn,mj denote the consumption of output of sector j in country m by consumers in country n. Then 

the country n-sector j consumption bundle is formed by the following CES aggregation: 

Cn,j = 

 N 

m=1 

Ω CB 
n,mj C 

1−ξc 
ξc 

n,mj 

 ξc 
1−ξc 

with 
N 

m=1 

Ω CB 
n,mj = 1, 

where ΩCB 
n,mj ≥ 0 is the weight of country-sector mj in country n’s consumption of sector j, and ξc 

captures the elasticity of substitution between these varieties. 
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2.2 Production 

Goods are produced at the sector level by combining different factors of production and intermediate 

inputs. We assume that factors are sector-specific labor and capital, and to help with notation we 

combine these to create a value-added bundle. Each sector in each country uses goods from other 

countries to construct their sector specific intermediate bundles. 

Sector i in country n, therefore, uses sector specific value-added (VAni) and intermediate bundle 

(Zni) to produce its final good via using the following production function: 

Yni = Ani 

 

Ω Y 
ni,VA VA 

1−θ 
θ 

ni +Ω Y 
ni,Z Z 

1−θ 
θ 

ni 

 θ 
1−θ 

with Ω Y 
ni,VA +Ω Y 

ni,Z = 1, (3) 

where Yni denotes the output of this sector and Ani is the sector-specific productivity parameter. 

Production follows a CES aggregation where θ determines the elasticity of substitution between the 

value added and the intermediate bundle. Finally, ΩY 
ni,VA and ΩY 

ni,Z are the shares of value added 

and the intermediate good used in the final good’s production, respectively. 

The value-added bundle for country-sector ni consists of sector-specific labor and capital. We 

assume that capital is always fully utilized and is always at its steady-state value (K∗ 
ni). Labor 

levels, on the other hand, may potentially fluctuate from their steady-state value when the economy 

experiences shocks. The value-added bundle is defined as: 

VAni = 
 
Ω VA 
ni,L (Lni) 

1−η 
η +Ω VA 

ni,K (K ∗ 
ni) 

1−η 
η 

 η 
1−η 

with Ω VA 
ni,L +Ω VA 

ni,K = 1, 

where η is the elasticity of substitution between labor and capital, and ΩVA 
ni,L (Ω

VA 
ni,K ) is the weight

of value-added that is attributed to labor (capital). 

Similar to consumption bundles, the intermediate bundles are constructed from country-specific 

sector bundles given the following CES aggregator with an elasticity of substitution of ε: 

Zni =

  
J 

j=1 

Ω Z 
ni,j X 

1−ε 
ε 

ni,j 

  

ε 
1−ε 

with 
J 

j=1 

Ω Z 
ni,j = 1, 

where ΩZ 
ni,j ≥ 0 is sector j’s weight in producing country-sector good ni and Xni,j is the amount 

of sector-level bundle Xn,j used by ni. These sector-level bundles are formed using the following 
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CES aggregator of country-specific varieties: 

Xn,j = 

 N 

m=1 

Ω X 
n,mj X 

1−ξs 
ξs 

n,mj 

 ξs 
1−ξs 

with 
N 

j=1 

Ω X 
n,mj = 1, 

where Xn,mj is the amount of output of country-sector mj used by country n, ξs is the elasticity 

of substitution between sector-level varieties, and ΩX 
n,mj is the weight of country-sector mj in the 

sector bundle for j in country n. Given the production structure of the economy outlined above, 

it follows that the bilateral flow of intermediate goods produced by country-sector mj and used by 

country-sector ni is given by: 

Xni,mj = Xn,mj 
Xni,j 

Xn,j 
. 

2.3 Monetary Policy, Current Account and Exchange Rates 

To close the model, we need to assume a monetary policy rule and solve for a world equilibrium. 

To move forward with this solution, we need to deal with two key variables in an open-economy 

setting: the current account and the nominal exchange rate. 

The majority of the general equilibrium trade literature that analyzyes shocks in a setting 

similar to ours circumvents the issue of solving for the current account by using “hat algebra” and 

assuming that current account changes are zero (e.g., see Costinot and Rodŕıguez-Clare, 2014). 

However, given that we must solve the model non-linearly, our solution method requires matching 

observed data (the steady-state values) in a global input-output matrix, which in turn requires 

matching matching observed initial current account balances and then solving for their post-shock 

changes. We therefore take a modeling approach similar to the one in Dekle, Eaton, and Kortum 

(2007, 2008) to solve for model-consistent current accounts. 

We further need to solve for each country’s exchange rate relative to some numéraire price, 

since we must convert all domestic factor prices into local currency to check whether the downward 

wage constraint is violated or not in each sector. Since we solve for a world equilibrium, all input-

output accounting is done in terms of a fictitious numéraire common currency. At the steady 

state, we assume the prices are normalized such that all bilateral exchange rates vis-à-vis the 

common currency are equal to 1. Upon the realization of the shocks that we feed into the model, 

these exchanges rates may move so they are no longer at parity with the common currency. The 
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following formalizes how we solve for changes in both current accounts and exchange rates when 

economies are shocked. 

First, we assume all countries are initially at the zero-lower bound in their interest rates (i = 0) 

as observed prior to the Covid shock. With this assumption, the inter-temporal budget formulated 

in Equation (2) becomes: 

PnCn + P ∗ 
n C ∗ 

n = In + I ∗ 
n. 

Maximizing the inter-temporal utility in Equation (1) yields: 

In = PnCn = 
1 − βn 

βn 
I ∗ 
n    

In local currency 

. (4) 

Note that this income level is given in the local currency as the inter-temporal budget allocation is 

made domestically in local currency units given a change in βn – the aggregate demand shock. 

GDP of country n can be calculated by solving for the total value-added (factor income) created 

in country n. Denoting the rental rate of capital in country-sector ni with Rni, we calculate the 

GDP of country n in the common currency as: 

GDPn = 
 

i 

(WniLni + RniK ∗ 
ni) . (5) 

At the world level, global expenditures are equal to global GDP. But for individual countries, 

because of the trade surpluses and deficits, income may differ from GDP. Calculating GDP and 

international trade in terms of the common currency, the exchange rate of country n relative to 

the common currency is denoted by en. We express the expenditures in local currency in terms of 

GDP and trade balance as: 

In/en = GDPn + Importsn − Exportsn   
–Current Account 

. 

To close the model, we assume that the trade balance (current account) is financed by partial 

ownership of production in foreign countries.11 To calculate this ownership ratio, we define the 

11The connection between this approach and that of a current account and savings decisions can be rationalized 
within a two-period model where countries have access to a foreign bond denominated in the common currency. See 
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bilateral trade balance between countries m and n as: 

Dnm ≡ Exportsm→n − Exportsn→m. 

A positive trade balance implies that country n is running a deficit vis-à-vis country m. Therefore, 

country n needs to own a portion of GDP in country m to finance this trade deficit. We define the 

ownership share of factors/sectors of country n in country m as: 

χnm ≡ 

   
Dnm 
GDPm 

if Dnm > 0, 

0 otherwise. 

With this definition, we can write the total income of country n in terms of common currency as: 

In/en = GDPn − 
 

m 

χmnGDPn    
Owned by foreigners in n 

+ 
 

m 

χnmGDPm    
Owned abroad by n 

. (6) 

Equating the spending from the expenditure side (Equation (4)) and the income side (Equation (6)), 

country n’s exchange rate vis-à-vis the common currency is solved for as: 

en ≡ 
(1 − βn)I ∗ 

n/βn 

(1 − 
 

m 
χmn)GDPn + 

 

m 
χnmGDPm 

. (7) 

2.4 Market Clearing 

We assume that all good markets clear. Goods can be used as final (consumption) goods and 

intermediate inputs in many countries. Therefore, we write the goods market clearing condition 

for country-sector ni as: 

Yni = 
 

m∈N 

(Cm,ni + Xm,ni) , 

where country m is the consuming country. 

For the factor markets, we take both labor and capital to be sector-specific. Capital is fully 

Silva (2023) for details. 
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utilized and assumed to be at its steady-state level with: 

Kni = K ∗ 
ni. 

Labor, on the other hand, is subject to shocks. In addition, we assume that there is a downward 

wage rigidity relative to the steady-state wage. Denoting the amount of available labor for country-

sector ni at the time of the shock with Lni and given the sector-specific labor assumption implies 

that: 

Lni ≤ L ∗ 
ni. 

Given the downward wage rigidity, there might be slack conditions in a sector’s labor market during 

the shock period. Therefore, the shock-period employment, Lni, maybe be lower than available 

labor: 

Lni ≤ Lni. (8) 

Finally, the downward wage rigidity necessitates that the wage in a given country sector (Wni) 

cannot go below its steady-state level (W ∗ 
ni) in local currency. The downward wage rigidity condition 

is then given by: 

enWni ≥ W ∗ 
ni   

In local currency 

⇒ Wni ≥ 
W ∗ 

ni 

en   
In common currency 

. (9) 

Optimality implies that at least one of the two preceding inequalities is binding: 

 
Lni − Lni 

  

Wni − 
W ∗ 

ni 

en 

 

= 0. (10) 

2.5 Solution 

To solve the model, we calibrate consumption and input weights, GDP shares and expenditure 

shares using the OECD Inter-Country Input-Output (ICIO) Tables. We calibrate the CES functions 

such that the weights coincide with the input and consumption shares. We normalize all prices, 

wages and rental rates to 1 at the initial steady state. We calculate all changes in common currency 

units while keeping track of exchange rate movements of countries relative to the common currency, 

which enables us to convert price changes to local currency when calculating domestic inflation rates. 
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Figure 1. Structure of enhanced input-output matrix Ω 

(a) Ω Matrix 

Ω = 

C Y Z VA X CB L K Ric Fut 

C 0 0 0 0 0 ΩC 0 0 0 0 

Y 0 0 ΩY 
Z ΩY 

VA 0 0 0 0 0 0 

Z 0 0 0 0 ΩZ 0 0 0 0 0 

VA 0 0 0 0 0 0 ΩVA 
L ΩVA 

K 0 0 

X 0 ΩX 0 0 0 0 0 0 0 0 

CB 0 ΩCB 0 0 0 0 0 0 0 0 

L 0 0 0 0 0 0 0 0 0 0 

K 0 0 0 0 0 0 0 0 0 0 

Ric 1− β 0 0 0 0 0 0 0 0 β 

Fut 0 0 0 0 0 0 0 0 0 0 

(b) Row / Column Indices 

Index Description Size Elasticity 

C Current Consumption N 1 
Y Goods / Varieties N × J θ 
Z Intermediate Bundle N × J ε 
VA Value-Added N × J γ 
X Country-Sector Bundles N × J ξi 
CB Consumption Bundles N × J ξ ′ i 
L Sector Specific Labor N × J 
C Sector Specific Capital N × J 
Ric Ricardian Consumer N 1 
Fut Future Consumption N 

Note: All sub-matrix definitions are given in the Sections 2.1 and 2.2. Non-zero sub-matrices are colored and light 
green colored sub-matrices indicate diagonal matrices. 

We provide a unified representation of the model by creating an enhanced input-output table, 

which is depicted in Figure 1. This generalized input-output matrix integrates households, sector-

level outputs, factors and input/consumption bundles that are required for production or used for 

consumption, with all these entities shown as rows and columns (row and column indices and their 

sizes are given in Panel 1b). Each row, i, in this matrix corresponds to a single CES aggregator 

with corresponding elasticity of substitution of σi and a price Pi. Given the CES assumption, we 

can then write the price index for each row as: 

P 1−σi 
i = 

 

j 

Ωij P 1−σi 
j if σi ̸= 1, 

log(Pi) = 
 

j 

Ωij log(Pj) if σi = 1, 
(11) 

where the second equation corresponds to the Cobb-Douglas case. 

We write the market-clearing condition for each row entry using information contained in the 

columns of the Ω matrix presented in Figure 1. For a given column j, we denote its total output 
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by Yj . This output is used by other entities as inputs or for consumption. Xij is the amount of j 

used by row i. The market-clearing condition for each row can be written as: 

Pj Yj = 
 

i 

Pj Xij = 
 

i 

Pj Xij 

PiYi 
PiYi. (12) 

Using the CES assumption, we then write the optimal input ratio of j in i as a function of relative 

prices: 
Pj Xij 

PiYi 
= 

 
Pj 

Pi 

 1−σi 

. (13) 

Dividing both sides of (12) by global GDP, we express a sector j’s output as a function of world 

output, i.e., its global Domar weight, which is currency free. Hence, we can relate the Domar 

weights to each other: 

Pj Yj 
GDPW 

≡ λj = 
 

i 

Ωij 

 
Pj 

Pi 

 1−σi PiYi 
GDPW 

= 
 

i 

Ωij 

 
Pj 

Pi 

 1−σi 

λi. (14) 

The Domar weight equations capture the propagation of the consumption of countries, given 

by Equation (6), down to the payments to factors of production along the global supply chains. 

Equations (11) and (14) solve for the prices and Domar weights up to a normalization factor, 

which can then be calculated using the fact that countries return to their steady-state levels in 

the future with the total world GDP normalized to 1. Since we take the βn (aggregate demand 

shock) and I∗ 
n as exogenous, we also know the expenditure of each country in local currency. Using 

Equation (7), we can calculate the exchange rates based on the factor Domar weights. Finally, we 

also respect the downward wage rigidity and labor constraints given in Equations (8), (9) and (10). 

We use the AMPL/Knitro optimizer to solve for these equations. Since we start by calibrating CES 

functions with equilibrium prices set to 1, our methodology yields solutions akin to the hat-algebra 

methodology often used in the trade literature. 

2.6 Approximating Inflation 

We next generalize Baqaee and Farhi (2022) to the open-economy setting given our model structure. 

Doing so allows us to provide an analytic first-order approximation of a country’s inflation as a 

function of domestic and foreign shocks. We utilize the Ω matrix in order to capture all necessary 
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information in deriving the approximation to inflation. We briefly sketch out the solution and refer 

the interested reader to Appendix C for a formal proof. 

First, we define the Leontief inverse matrix: 

Ψ = [I − Ω]−1 , 

where I is the appropriately sized identity matrix. The Leontief inverse captures the direct and 

indirect dependencies between entities. For country n, its consumption dependencies are captured 

by the nth row of the Ψ matrix, which corresponds to the households of this country. The entries of 

this row reflects how much of the output of the output of the corresponding entity accounts for direct 

and indirect expenditures in country n accounts. These constitute the basis for country-specific 

Domar weights, which capture the influence of a sector or a factor in the consumption basket of a 

country. Formally, we define the country-specific Domar weights for each country-sector as: 

λn 
mj = Ψn,mj for mj ∈ Y. 

Similarly, for labor, with some abuse of notation we define:12 

Λn 
mj = Ψn,mj for mj ∈ L. 

We write the corresponding column vector for these Domar weights by dropping the subscripts. 

With these definitions in hand, we calculate the first-order approximation to the CPI in country n 

via the following proposition: 

Proposition 1. The first-order approximation to CPI in country n is: 

d log CP I n = d log I n    
AD shock 

− (Λn)T d log L    
Labor shock 

− (λn)T d log A    
Productivity shock 

, 

where λn (Λn) is the vector of country-specific Domar weights for country-sector pairs (labor types), 

A is the vector of sector-specific productivities, L is the vector of labor levels and In captures the 

aggregate demand shock. 
12Since labor is sector specific, we can index it using the country-sector indices. 
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Proof. See Appendix C. 

This first-order approximation captures the importance of international linkages since all the terms, 

namely aggregate demand, labor, and productivity changes, are calculated globally. 

The proposition yields several insights. A positive aggregate demand shock to economy n, In , 

creates inflation to the first order. This shock includes both the domestic AD shock and the impact 

of its exchange rate change vis-à-vis the common currency, which in turn captures changes in other 

economies and their domestic aggregate demand shocks as well. When considering higher-order 

solutions, these shocks might induce a slight disinflationary component since aggregate demand 

shocks may relax the wage-rigidity condition by depreciating the domestic currency. Foreign aggre-

gate shocks might impact inflation through a similar channel. For instance, if there is Keynesian 

unemployment in a foreign country due to downward wage rigidity, this will create inflation at 

home. However, if a foreign aggregate demand shock remedies the Keynesian unemployment prob-

lem (foreign fiscal stimulus), then inflation decreases at home. Hence, if the US is running a slack 

labor market because of nominal wage rigidities, a fiscal stimulus in the US might increase inflation 

in the US but decrease it in the rest of the world. 

To examine how the other shocks impact domestic inflation, we first note that households are 

the terminal nodes of the input-output networks. Starting from the households, we can thus trace 

back the origin of the goods that are consumed in country n. The Leontief inverse operation 

captures this path of production to consumption. Applying this Leontief logic, define the share of 

the output of country-sector mj directly or indirectly (i.e., through supply chains) consumed by 

households in country n with Y n 
mj . Then, the country-specific Domar weight can be written as: 

λn 
mj ≡ 

Pmj Y n 
mj 

In 
. 

For each sector, we know the share of the sector-specific labor in its value-added. Then, we can 

interpret the country-specific Domar weights for labor factors as: 

Λn 
mj = Ω Y 

mj,VA Ω VA 
mj,L λ

n 
mj . 

Therefore, Λn 
mj , captures the labor share of the output of mi to directly or indirectly satisfy the 
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Figure 2. Foreign Share of the Factor Domar Weights 
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Notes: This figure shows the share of the foreign factors of the Domar weights (Λn 
FOR defined in Equation 15) and 

foreign share of the final good consumption. Dashed gray line show the 45◦ line. 

consumption in n. 

Proposition 1 implies positive productivity changes, d log A, are deflationary in nature, and 

shocks to productivity in country-sector mj impact inflation in country n in proportion to λn 
mj . 

Meanwhile, labor shortages, at home and abroad, are inflationary domestically. The shocks to labor 

supply in country-sector mj impact domestic inflation in proportion to country-specific Domar 

weight, Λn 
mj . 

Note that labor shortages are inflationary, acting as a cost-push shock regardless of whether 

they come from (lower labor supply or lower labor demand). Clearly, a negative labor supply shock 

is inflationary, decreasing the equilibrium level of labor. Suppose, instead, the equilibrium level of 

labor decreases due to a negative sectoral demand shock. In that case, another sector has a positive 

labor demand shock since all sectoral demand shocks are relative and factor markets are segmented. 

Hence, the effect of such labor demand shocks on aggregate inflation is to increase inflation due to 

factor price inflation in those markets experiencing demand boosts, which is the other side of the 

coin of employment decreases in the sector experiencing the negative demand shift.13 

To quantify the potential impact of factor shortages in foreign countries in creating inflation in 

13Aggregate demand changes act similarly in our model since it is a multi-country, multi-sector model. A shock 
to all sectors in a particular country can be understood as a sectoral demand shock in a closed economy. Instead of 
shifting resources away from a sector, it shifts resources away from a country. 
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country n, we define Λn 
FOR, as the share of foreign factors in satisfying household consumption in 

country n: 

Λn 
FOR ≡ 


m̸=n 

 

j 

Λn 
mj ≡ 1 − Λn 

DOM. (15) 

The last equality comes from the fact that sum over all factors are equal to 1. 

Figure 2 shows the values for Λn 
FOR for all countries present in the OECD’s ICIO Tables.14 

The share of foreign factors is higher compared to the direct share of imports in final goods for 

all countries. Intuitively, this captures the fact that total domestic consumption of foreign goods 

includes both final goods as well as foreign factors that are “embedded” in all consumption goods 

(both domestic and foreign) arising from the use of intermediate goods in production. However, 

these shares vary significantly between countries. For instance, a 1 percent decline in factor levels in 

foreign countries would potentially result in 0.12 percent increase in the CPI for the US compared 

to 0.55 percent increase in the CPI of Ireland. 

Finally, we also use the Domar weights, λn 
mj , to ask how productivity shocks d log A impact 

domestic inflation (to a first-order) using Proposition 1. According to the proposition, the impact 

of any country-sector productivity shock will impact aggregate domestic inflation in proportion to 

that country-sector’s Domar weight. This Domar weight captures the direct and indirect use of a 

given country-sector input into the production of final goods of the ultimate customer, so embeds 

global supply chain linkages’ importance in transmitting foreign sector-level productivity shocks 

on domestic inflation. This term plays an important role in transmitting the impact of the energy 

price shocks resulting from the Ukraine-Russian war as we model the change in energy prices as 

originating from a negative technology shock in Russia’s fossil fuels sector. The Domar weight of 

Russia’s energy sector for German consumption is 0.0031, Euro Area consumption as a whole is 

0.0025, and for the US consumption is 0.0006. Therefore, the expected effect of an increase in 

Russian energy price is approximately 5 times higher for Germany and 4 times higher for the Euro 

Area compared to the US. 

14See Section 3.1.5 for the description of ICIO Tables 
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3 Data Description and Construction of Shocks 

The model-based quantitative exercises require four sets of shocks: country-level aggregate demand 

changes, country-sector level factor supply changes, country-sector level demand changes, and global 

energy price changes. The analyses use data on four “countries”: the United States, the Euro 

Area,15 Russia, and a Rest of the World composite (ROW) that importantly includes China; and 

four sectors: durables, non-durables, services, and energy. 

We focus on these four countries and sectors given data constraints on sector-level data for ROW 

countries. Nevertheless, even with this level of aggregation, we are able to capture the key shocks 

during our analysis period, and how they vary in the cross section. For example our measured 

shocks are able to capture the stringency of the Chinese lock downs in 2020-2021 (measured by 

the shocks to the China+ labor supply), the US and European fiscal stimuli of 2021–2022, and 

the Russia-Ukraine War in early 2022 and its impact on energy prices worldwide. We include 

Russia and also an “energy” sector to be able to speak to the role of higher energy prices and 

their implications for the US and, importantly, for the Euro Area, which was the region that, a 

priori, appeared to be one of the country groups that would be the most affected by the energy 

shock. We map the energy price shock to a decline in Russia’s energy sector productivity and study 

the inflation spillovers of such a shock to other countries. We next describe our data sources and 

explain details of how we construct the shock series using these data before showing how the shocks 

evolved over time. 

3.1 Data 

3.1.1 Aggregate Demand 

The model-implied measure of an aggregate demand shock is a deviation in local currency ex-

penditures (In) from its steady-state value. We therefore collect cross-country data on nominal 

expenditures or absorption, depending on data availability, at the quarterly frequency. We then 

compute growth rates of these series each quarter relative to the base (steady-state) year 2018 to 

use as shocks in the model.16 

15Note that we rely on Euro Area countries’ underlying data and aggregate up. 
16We choose 2018Q4 as our base period to be able to construct year-on-year model-based inflation rates for 2020. 

To do so, we require model-predicted price levels for 2019. We could have alternatively used actual data for 2019 
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United States. We use gross national income (codename: A023RC1Q027SBEA) available from the 

Bureau of Economic Analysis (BEA). These data are available at a quarterly frequency from 2010 

to 2022. 

Euro Area. Gross national income is only available at a yearly frequency for the Euro Area, 

which is not appropriate for our empirical application. For this reason, we instead collect data on 

absorption from EuroStat, which we use as the Euro Area measure of In. Aggregate absorption 

includes household and consumption expenditures, gross fixed capital formation, and imports. 

Russia and China+. We construct a measure of the China+’s expenditures by adding up 

consumption on durables, non-durables, and services from the OECD quarterly national accounts 

for all countries except the United States and those in the Euro Area. Since data for Russia have 

not been updated for 2022, we use numbers from the Rest of the World to construct Russia’s 

aggregate demand. While these approximations are not ideal they should not impact the results 

for the two countries of focus – the US and the Euro Area – given that these countries aggregate 

demand shocks are more likely to spillover to other countries rather than the other way around 

given the observed patterns of international trade and relative sizes of stimuli across countries. 

3.1.2 Country-Sector Level Factor Supply: Total Hours Worked 

The growth rates of total hours, defined as log-deviations from pre-pandemic steady-state values, 

are used as shocks to potential sector-specific labor supply, ¯ Lni. Of course, observed changes in 

total hours observed in the data are an equilibrium objects and depend on labor demand and labor 

supply in each sector. Given our modeling assumption of nominal downward wage rigidity, negative 

changes in equilibrium labor can be rationalized by a decline in labor demand or labor supply. In 

contrast, positive changes in equilibrium labor can only be rationalized by a combination of labor 

demand and supply shifts, where a necessary condition is that labor supply shifts at least in the 

same amount as labor demand. In an extreme case, if labor supply does not shift up while labor 

demand does, this only creates wage inflation with no effect on the equilibrium level of employment 

and cannot possibly rationalize increases in total hours worked in equilibrium. As we explain in 

instead to calculate the inflation rates, but we wanted to use a consistent methodology throughout the three years of 
analysis. 
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detail when discussing the results in the next section, we use the model structure in conjunction 

with the other set of shocks to disentangle changes in total hours worked into supply and demand. 

The results support our assumption that changes in observed hours work best capture labor supply 

shocks. 

United States. We use Tables B1 and B2 provided by the Bureau of Labor Statistics (BLS) 

to collect information to construct our measure of labor supply. These tables contain information 

on employment and average weekly hours at a monthly frequency, respectively. Since hours in 

Table B2 are at a higher level of aggregation than those for employment in Table B1, we construct 

measures of L in the model by multiplying employment in a disaggregated sector by the hours of 

the aggregate sector. For example, the ‘Information sector’ contains six sub-sectors in Table B1, 

but it is only available as an aggregate information sector in Table B2. We thus multiply each 

sub-sectors employment by the hours of the aggregate sector in Table B2 to obtain a measure of 

total hours worked in each of the six sub-sectors separately. Our final sample contains information 

from 2006 to 2022 for 66 sectors that we aggregate up to 4 sectors. 

In addition, we also collect information on total private employment (code CES0500000001) 

and hours (code CES0500000002) from the BLS and construct total hours worked for the aggregate 

economy as we did for the sector-level numbers. 

Euro Area, Russia and China+. Since sector-level and time series data are not readily avail-

able for Russia and China+ for the time span analyzed, we take an indirect approach to construct 

total hours worked changes for these countries. For the Euro Area, while information is available 

on hours and employment, they do not necessarily capture the variation we are after due to sev-

eral pandemic-era laws and regulations that effectively kept measured labor hours and employment 

from fluctuating very much during this period. For this reason, we use the indirect approach to 

construct the labor supply shock series for the Euro Area as well.17 

The indirect approach is as follows. We first regress total hours worked shocks computed at the 

sector level for the US on the US stringency index from Hale et al. (2021), which aims to capture 

the strictness of countries’ government policies against Covid. Formally, we run the following 

17Indeed, this indirect approach delivers larger variations in hours worked across sectors than those implied using 
EuroStat information. 
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specification for the period 2020m1 to 2022m12: 

ε̂(hw)US 
st = β0s + βsS US 

t + ν US 
st , 

where ε̂(hw)US 
st are the total hours worked “shock” in sector s in the United States at time t, 

constructed as we explained in the previous section, SUS 
t is the stringency index in the US at time 

t, and νUS 
st is an error term. From this regression, we recover the estimated coefficients (β̂0s, β̂US). 

We then project the stringency index of the Euro Area, Russia and China+ using these estimated 

parameters to get predicted values of total hours worked in each sector for both countries: 

ε̂(hw)c 
st = β̂0s + β̂sS

c 
t , 

where ε̂(hw)c 
st is the series total hours worked shocks in country c, sector s at time t and c = 

{Euro Area, Russia, China+}. 

For Russia we use the direct stringency index provided by Hale et al. (2021). For the Rest of the 

World, we use a population-weighted average of the stringency index in Hale et al. (2021) by taking 

this mean across all available countries except the United States and countries belonging to the 

Euro Area. Importantly, China appears in the stringency index, and as a result, our predictions for 

the Rest of the World will contain their strict lockdown policies that were a focal point in creating 

the early supply chain disruptions in 2020. For the Euro Area, we use the population-weighted 

average of its 19 member countries’ stringency indices. 

3.1.3 Country-Sector Level Demand: Consumption Expenditure 

sector-level demand shocks – changes in ΩC 
n,j in the model – are computed as the change in sector-

level consumption expenditure shares across non-durable goods, durable goods, services, and the 

energy sector. Computing the shocks therefore requires cross-country information on disaggregated 

sector-level consumption patterns at the quarterly frequency. 

United States. We use information on personal consumption expenditures from Table 2.3.5U of 

the Bureau of Economic Analysis version May 2023. This data set contains disaggregated sector-

level information on personal consumption expenditures from 1959 to 2022 at a quarterly frequency. 
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In particular, we use durable, non-durable, services, and energy sector consumption from this table. 

Euro Area. We use the information on durables, non-durables, and services from the OECD 

quarterly national accounts. These data are available from 2010 to 2022 at a quarterly frequency. 

Unfortunately, the data set does not have information on consumption in the energy sector sep-

arately. Since energy consumption is part of non-durable consumption, we assign the change in 

non-durables to the energy sector. 

China+. We use information from the OECD quarterly national accounts to construct sector-

level consumption shares for the Rest of the World. We consider all countries except the United 

States and those belonging to the Euro Area. Consumption series are denominated in local currency 

for all countries, so to construct a China+ aggregate we convert all series to US dollars using the 

average exchange rate between 1990 and 2022 per country that we source from the IMF. Finally, 

we aggregate each consumption series across countries. In doing so, note that we assume the Rest 

of the World’s “fictitious” currency moves with the dollar one-to-one. As was in the case for the 

Euro Area, we assume energy consumption experienced the same changes as non-durables. 

3.1.4 Energy Prices 

We proxy energy prices using the energy commodity price index constructed by the IMF (code: 

PRNG). This index contains information on crude oil, natural gas, coal price, and propane price 

indices and is available at a monthly frequency from 1992 to 2022. We choose this broad index to 

better capture the potential impact of the Russian-Ukraine War, on countries’ inflation rates, and 

particularly the Euro Area, which heavily depended on Russian natural gas. 

3.1.5 Input-Output Matrices, Factor and Consumption Shares 

Since we assume two sector-specific factors (capital and labor) in each sector in our quantitative 

exercise, we need to compute each factor’s respective share in nominal GDP. To simulate the model, 

note that we only need to construct these shares, along with intermediate input expenditure and 

consumption shares for the initial steady state (the year 2018). 
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Input-Output Matrices. We use the 2018 inter-country input-output (ICIO) tables from OECD, 

which contain information for 45 sectors and 66 countries. Given data constraints on other sector-

level data (e.g., sector-level hours worked or consumption shares) as well as country coverage for 

other data series, we aggregate the ICIO tables into our four countries and four sectors of interest. 

These input-output tables allow us to construct intermediate input linkages at the country-sector 

level. 

Factor Shares. The ICIO tables do not contain information on capital and labor payments at 

the country-sector level. We therefore supplement the ICIO tables with the structural analysis 

(STAN) database for the year 2018. This database contains information on labor compensation 

(labor payments) and gross operating surplus (capital payments). These data allow us to construct 

the fraction of value added that is paid to labor at the country-sector level for the United States 

and Euro Area. We aggregate all countries outside of the Euro Area and the United States into a 

single Rest of the World composite country, sector by sector. Due to data availability, we assume 

that Russia has the same sector-level labor shares as the Rest of the World. Table A.1 in the 

appendix shows the numbers we use for each country-sector. 

3.2 Aggregate and Sector-level Facts 

As explained above, we feed in actual data on expenditures, aggregate and sector-level, hours 

worked, and global energy prices as shocks to our model to recover changes in the sector-level 

prices and wages, and sector-level expenditure shares together with aggregate prices. It is therefore 

useful to first examine the time series of the data series used to construct the shock series. 

Figure 3 begins by plotting aggregate data, where panel (a) plots the aggregate of log hours 

worked relative to its 2018Q4 value across countries, and panel (b) plots aggregate demand – 

log deviation relative to 2018Q4 – across countries.18 We can see that hours worked declined 

in all countries to slowly recover their 2018Q4 levels by the end of 2021 for the United States 

and 2022 for the other countries. Panel (b) of Figure 3 shows the aggregate demand changes 

18As explained in the earlier section, we construct measures of aggregate demand using nominal expenditures. 
For the US, we use gross national income. For the Euro Area, we use domestic absorption. For China+, we add 
up durables, non-durables, and services expenditures from the OECD quarterly national accounts for all countries 
except the US and those belonging to the Euro Area. Due to data availability, we use the same China+ numbers for 
Russia. 
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Figure 3. Aggregate Hours Worked and Expenditures 

(a) Total Hours Worked 
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(b) Aggregate Demand 
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Note: These figures plot the log deviations of aggregate time series relative to their 2018Q4 value. Panel (a) of plots 
total hours worked across countries, while panel (b) plots aggregate demand. See the main text for definitions and 
data sources of each series. Note that aggregate demand is constructed such that it is equal for Russia and the Rest 
of the World, so we include only the series for China+. 

(nominal expenditures) for the Euro Area, United States, and the Rest of the World. Due to 

data unavailability of Russia’s aggregate expenditure nor nominal GDP, we also use the Rest of 

the World’s aggregate demand shock for Russia. Consistently across countries, aggregate demand 

plummeted during early 2020 to recover its level in early 2021. 

Figure 4 shows the sector-level demand changes as the cumulative growth of nominal expendi-

tures relative to 2018Q4. Several interesting facts jump out. First, services consumption uniformly 

plummeted across countries at the onset of the pandemic, and barely started to recover in the Euro 

Area by the end of 2022 and was far below its pre-pandemic level in both the United States and the 

Rest of the World during the pandemic period. Second, we observe the initial shift in consumption 

from services to durable goods during early 2020. This shift occurred across all countries, but was 

by far the largest in the United States. Meanwhile, non-durable consumption growth was relatively 

larger compared to the growth in durables outside the US. 

Figure 5 plots the time series of the energy price shocks. As explained above, the energy index 

used to construct the shocks contains information on oil as well as natural gas prices. We can see 

that at the beginning of the pandemic, energy prices were lower than their level in 2018Q4, and 

began to increase, return to pre-pandemic levels by mid-2021 and then continuing to rise. This 

pattern is consistent with that described in Gagliardone and Gertler (2023), where oil prices started 

to rise in mid-2021 and into 2022. 
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Figure 4. Sector-level Consumption Expenditures 

(a) United States 
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(b) Euro Area 
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(c) Russia 

-.5 

0 

.5 

1 

1.5 

2 

C
um

ul
at

iv
e 

An
nu

al
 G

ro
w

th
 (2

01
8Q

4 
= 

0)
 

20
18

q4

20
19

q1

20
19

q2

20
19

q3

20
19

q4

20
20

q1

20
20

q2

20
20

q3

20
20

q4

20
21

q1

20
21

q2

20
21

q3

20
21

q4

20
22

q1

20
22

q2

20
22

q3

20
22

q4
 

Durables Non Durables Services 

(d) Rest of the World 
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Note: This figure plots nominal consumption growth in each quarter vis-a-vis 2018Q4 and cumulated for four 
different consumption series: durables, non-durables, services, and energy. The cerulean dot-dashed line represents 
durable consumption. The dashed purple line represents nondurable consumption. The green line represents energy 
consumption. Finally, the pink dot line represents service consumption. Since we source sector-level consumption for 
the Euro Area and the Rest of the World from the OECD quarterly national accounts, it only contains information for 
durables, non-durables, and services. Due to data availability, we use the same behavior of sector-level consumption 
shares for Russia as that of the Rest of the world. Thus, Panel (c) and (d) are the same. 

4 Results 

This section presents results for model quantification exercises using the data and shock series 

described above. Given the model’s rich consumption and production structures, we must choose 

several parameters in order to perform our calibrations. Importantly, several of these parameter 

choices will allow us to control how substitutable factors and goods used for production are with 

each other, both within and across countries. 

Our baseline quantification exercises use the parameter values presented in Table 1. A key 

assumption that we make in our baseline choice of parameters, based on the recent empirical 

literature, is that inputs to production have a low degree of substitutability in the short run. We 
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Figure 5. Energy Prices 
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Note: This figure shows the energy price index relative to its value in 2018Q4. 

Table 1. Baseline parameter values 

Parm. Value Source Related to 

θ 0.6 Atalay (2017) EoS between intermediates and VA 
η 0.6 Oberfield and Raval (2021) EoS across factors 
ε 0.2 Boehm et al. (2019) EoS among intermediate inputs 
ξs 0.6 Consistent with η, ε Country-sector level input bundle EoS 
ξc 0.6 Consistent with η, ε Country-sector level consumption bundle EoS 

Note: ‘EoS’ stands for elasticity of substitution. 

assume complementarities across factors (η) and between factors of production and intermediate 

inputs (θ). Further, intermediates themselves are difficult to substitute for each other along the 

whole production process, which is meant to capture the difficulty in substituting between types of 

inputs (e.g., steel vs. plastic, ε) as well as source of inputs (e.g., Chinese vs. US steel, ξs). Similarly, 

we assume that the elasticity of substitution for sector-level consumption across countries is also low 

in the short run (ξc). We will vary the degrees of substitutability in further exercises to highlight 

how these elasticities impact the importance of shock transmission to domestic inflation. 

Besides elasticities, we also need to take a stand on what kind of shocks we feed into the model 

each time we estimate it. Table 2 shows the scenarios we consider in this section. In particular, we 
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Table 2. Shocks and Scenarios 

Scenario Shocks Countries 
Baseline All All 
Sector-level Supply Sector-level supply only All 
Sector-level Demand Sector-level demand only All 
Aggregate Demand Aggregate demand only All 
Energy Energy shock only Russia and China+ Energy Sector 
Domestic All Domestic country 
International All Foreign countries 
China Supply Sector-level supply China only China+ 

Note: This table shows the different shocks we use in each scenario. 

consider eight different model quantification exercises. We explain these as we present their results. 

Before moving on to discussing the results of the different exercises, we first explain how we use the 

model structure and quantification exercises to confirm the assumptions we make on the mapping 

between sector-level supply shocks and the data-shocks we feed into the model. 

Sector-level Supply-Only Shock Scenario and Downward Nominal Wage Rigidities. 

Our model-to-data assumption implies that we consider changes in hours worked at the sector level 

as if these were shocks to potential sector-level labor supply. In the data, however, changes in 

sector-level hours worked come from supply and demand forces. We use the model solutions after 

feeding in shocks to assess if a shock is to labor supply. To help build intuition on this approach, 

we describe two examples of how the model assesses a labor supply change in a given sector in our 

quantitative exercises. 

Figure 6 presents simple diagrammatic analysis of the forces driving the labor market dynamics 

in the context of our model over two phases of the pandemic. Panel (a) plots the early phase of 

the pandemic. The y-axis, Wf , is the wage in the sector, while the x-axis represents the labor 

quantity, Lf . Wf is the lower bound on the nominal wage, ¯ Lf is the potential labor supply, and Ld 
f

represents the labor demand. To solve the model, we need to take a stand on the initial equilibrium. 

Point A represents such equilibrium where labor supply meets labor demand. Starting from point 

A, an observed fall in hours worked may have been driven by inward shifts in potential sector-

level labor supply or labor demand combined with the nominal downward wage rigidity. In the 
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example depicted in the figure, demand shifted by more than supply, thus driving the wage to hit 

the lower bound at point B. In this case, employment is demand-determined, and there are infinite 

combinations of potential labor supply shifts, i.e., changes in ¯ Lf , consistent with the economy 

moving from point A to point B. 

Panel (b) shows the late 2021 to 2022 phase, where employment started to recover in some 

sectors relative to the initial equilibrium. Within our framework and in contrast to the early phase 

of the pandemic, sector-level employment may only have increased because demand and supply 

move in tandem. For example, an increase in ¯ Lf without an accompanying increase in labor 

demand, Ld
f , puts downward pressure on wages. Since wages cannot fall below W f , the rise in 

L̄f does not affect wages and employment in equilibrium. Similarly, an increase in labor demand 

without changes in ¯ Lf implies that wages must rise without affecting equilibrium employment. 

In both cases, we use the model to tell us what the shocks to potential employment, ¯ Lf , 

are: whenever the full model, where we feed all shocks series, gives a solution where the nominal 

downward wage rigidity is binding in that sector, we set the potential sector-level supply shock to 

zero. Otherwise, we assume that hours worked changes in the data maps directly to changes in 

L̄f . Taking such an approach is conservative: it decreases the role of potential labor supply shocks 

when hours worked decline in the data relative to 2018Q4. Thus, our numbers on sector-level supply 

changes have to be considered as a lower bound on the role of sector-level supply on inflation under 

this approach. 

4.1 Baseline Quantification Exercise 

Figure 7 begins by plotting quarterly CPI inflation rates for the model calibration, using all shocks 

to all countries, and data for the United States and the Euro Area, in panels (a) and (b) respectively. 

Both sets of inflation rates are calculated as year-on-year annual growth rates. 19 

We plot actual inflation with the solid black line while the blue diamonds are the model-

generated inflation rates that are calculated by feeding in the shock series quarter-by-quarter. We 

further highlight two periods with pink diamonds: (i) the Covid Lockdown, and (ii) the Rebound 

resulting from economies reopening. The magnitude of shocks during these periods, particularly 

19The model gives the price level in deviation from steady-state. We convert them to year-on-year annual growth 
by taking the annual (log) difference between the model-predicted post-shock price levels. The resulting series is our 
model-based inflation. 
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Figure 6. Sector-level Labor Markets under Nominal Downward Rigidity 
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aggregate demand, are an order of magnitude larger than economic shocks witnessed in recent 

memory (e.g., compared to the Global Financial Crisis), and we therefore put less weight in the 

model being able to match observed inflation during these periods.20 The model still performs 

remarkably well in matching observed inflation over the 2020q1–2022q4 period for both the US and 

the Euro Area. 

Figure 8 next shows that our model calibration produces USD/EUR exchange rate dynamics 

similar to those observed in the data throughout the sample period. Of note, the model matches 

the USD depreciation in 2020 and then its appreciation since early 2021. These exchange rate 

dynamics correspond to the movements in the US current account, which the model also has 

success in matching. Figure 9 plots the model and data current-account-to-GDP ratio over time for 

the US. As can be seen, the current account deficit widened in 2020, improved in 2021, and then 

widened again in late 2021–2022. This pattern matches well with the pattern of movements in US 

aggregate demand and savings, which originally increased during the lockdown but then started 

to fall given aggregate demand stimulus (See Aggarwal et al. (2023), Gourinchas et al. (2021) for 

similar current account dynamics). 

20It is also debatable how well national statistical agencies were able to measure economic series, such as GDP or 
aggregate expenditures, during the Covid lockdown. 
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Figure 7. United States and Euro Area Inflation Rates: Baseline Model vs. Data 

(a) United States 

20
20

Q1

20
20

Q2

20
20

Q3

20
20

Q4

20
21

Q1

20
21

Q2

20
21

Q3

20
21

Q4

20
22

Q1

20
22

Q2

20
22

Q3

20
22

Q4 
-8 

-6 

-4 

-2 

0 

2 

4 

6 

8 

10 

12

 In
fl

at
io

n
, %

 Covid-Lockdown

 Rebound 
Data 
Model 

(b) Euro Area 
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Note: This figure shows annual inflation implied by the model (blue diamonds) relative to the headline CPI inflation 
in the data (black solid line) when feeding the model with all shocks. The pink diamond in 2020Q2 highlights the 
Covid lockdown period, while the pink diamond in 2021Q2 highlights a “base effect” that exist in macroeconomic time 
series, as economic activity had a huge rebound relative to the Covid lockdown phase once the economy reopened. 

Figure 8. USD-Euro Exchange Rate: Model vs. Data 
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Note: This figure plots the annual percentage change in the USD/EUR exchange rate implied by the baseline model 
(blue diamonds) and the observed change in the data (black solid line) for comparison. 

4.2 Shock Decomposition 

We next provide a decomposition of the “all shock” inflation numbers that were generated by the 

model shown in Figure 7. To do so, we re-estimate the model by applying each shock one-by-one 

34 



Figure 9. Current Account-to-GDP Ratio: Model vs. Data 

(a) United States 
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Note: This figure shows the current account-to-GDP ratio implied by the baseline model (blue solid line). We also 
plot the current account-to-GDP ratio as in the data (black solid line) for comparison. 

(for all countries). Figure 10 shows the output for these exercises for the US and Euro Area in 

panels (a) and (b), respectively. Before describing the full sets of results, it is worth noting that the 

sum of predicted inflation rates of the different “shock experiments” need not equal the inflation 

rate of the “all shock” model results reported above, since the solution to that model captures 

non-linear interactions generated by applying all shocks simultaneously. 

We begin by considering the impact of sector-level supply shocks (the blue dots) in isolation. 

Two main patterns emerge, both for the US and Euro Area. First, sector-level supply shocks were 

inflationary early in the pandemic. Thus, in the absence of these shocks, there would have been 

more disinflation early on than observed in the data. Ssecond, we see that without the expansion of 

sector-level supply in early 2022 as supply chain bottlenecks began to clear up and workers began 

returning more to the labor market, inflation would have been even higher in both the US and the 

Euro Area. 

Second, we examine the role of sector-level demand shocks (the yellow crosses). The shocks 

capture the consumption switching across sectors that took places as economies closed and then 

reopened. Interestingly, the substitution to goods consumption in the US early in the pandemic 
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had an inflationary effect, but the rebalancing later as the economy reopened did not have a 

disinflationary effect. Meanwhile, the demand substitution does not appear to have played a role 

in driving the inflation in the Euro Area throughout the sample period. 

Third, we explore the role of aggregate demand shocks (pink plus signs) in the evolution of 

inflation across countries. According to our quantification exercises, these shocks clearly played 

an important role in driving inflation over the period. Notably, the model captures the impact of 

the fall in aggregate demand and its disinflationary forces early on in the US as is also found in 

Baqaee and Farhi (2022). Interestingly, these negative aggregate demand shock forces appear to 

have played an even greater role in the Euro Area early on (irrespective of including in the ‘Covid 

Lockdown’ point). The reopening rebound and various expansionary policies then had a large 

inflationary impact in both countries. The model results show that the positive aggregate demand 

shock has a larger impact in the US vs. the Euro Area, which matches up well with the narrative 

of the differential impact of stimulative policies in the two regions over this period. Looking at the 

end of the sample period, a fall in the aggregate demand shock explains the fall in inflation at the 

end of 2022. 

Finally, the green stars denote the model-predicted inflation arising from energy shocks. These 

shocks play a minor role early on in the pandemic and are if anything disinflationary. Moving into 

2021 and the Russia-Ukraine War, we see that energy shocks start to exert an upward pressure on 

prices. Looking at the period where this effect was at its peak, 2022Q1, we find that the model 

predicted energy inflation is almost twice as large for the Euro Area and than in the US; 5.5 vs. 3 

percent. 

International Spillovers. We next investigate the role of international spillovers, under our 

baseline flexible exchange rate regime, on domestic inflation in Figure 11. Comparing the domestic 

(orange crosses) and international (purple pluses) points US and the Euro Area, we see that model-

based inflation is mostly a domestic shock-driven phenomenon. This result defers from our earlier 

work, where the model was solved under fixed exchange rates, and we found that external shocks 

played a larger role for the Euro Area: we found that two-thirds of inflation in Europe was explained 

by external shocks (di Giovanni, Kalemli- ¨ Ozcan, Silva, and Yıldırım, 2022). International shocks 

have less of an effect in our current model as exchange rates are allowed to change endogenously. 
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Figure 10. United States and Euro Area Sources of Inflation: Shock Decomposition 

(a) United States 
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(b) Euro Area 
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Note: This figure shows annual inflation in the data (black line) relative to the data when feeding the model with all 
shocks and counterfactual scenarios where we feed in one type of shock at a time. The pink + in 2020Q2 highlights 
the Covid lockdown period, while the pink + in 2021Q2 highlights a “base effect” that exist in macroeconomic time 
series, as economic activity had a huge rebound relative to the Covid lockdown phase once the economy reopened. 

Of note, the impact of aggregate demand shocks on inflation are neutered by the corresponding 

exchange rate movements. However, the effect of international shocks are still more important for 

Euro Area countries compared to the US, which is consistent with the differences in the foreign-

factor component of consumption depicted Figure 2 (as well as our earlier findings under a fixed 

exchange rate modeling assumption). In other words, the foreign factor content of European output 

is larger than that of the US, so the Euro Area inflation is more impacted by shocks to foreign 

factors (i.e., foreign supply shocks that are transmitted by the global production network). This 

result is notable is 2022Q1, which picks up European’s reliance of imported petroleum products in 

production. 

The Role of Chinese Lockdown Shocks. Chinese lockdown policies played an important role 

in generating supply chain bottlenecks throughout the world, helping to generate supply-demand 

imbalances that arguably helped to fuel inflation across countries. We examine the impact of the 

“Chinese supply shocks” using the model by feeding in China-specific labor supply shocks in the 

model, while omitting other shocks. To be precise, we apply the China sector-level labor supply 

shocks to all countries in the China+ aggregate and simulate the model. Figure 12 presents results 

of this quantification exercise of the US and the Euro Area in panels (a) and (b), respectively. This 
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Figure 11. United States and Euro Area Sources of Inflation: Domestic and International Shocks 

(a) United States 
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(b) Euro Area 
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Note: This figure shows annual inflation when feeding only domestically originated shocks (orange x) relative to 
international shocks only (purple +). 2020Q2 highlights the Covid lockdown period, while 2021Q2 highlights a 
“base effect” that exist in macroeconomic time series, as economic activity had a huge rebound relative to the Covid 
lockdown phase once the economy reopened. 

exercise shows several interesting patterns. First, the China shock had a non-negligible impact in 

both regions early in the pandemic, with its impact dampening out by the end of 2021. Second, 

we see that the impact of the China shock was fairly large during the re-opening rebound period, 

2021Q4, which highlights the peak supply-demand imbalances as economies began to reopen. Fi-

nally, contribution of the China supply shock to Euro Area inflation was as large, if not larger, 

than its contribution to the United States. This captures the fact that while the US increased 

demand for goods relatively more than the Euro Area over the pandemic, the Euro Area’s foreign 

content of consumption (see Figure 2) is larger than that of the US, so it was more impacted by 

negative supply shocks to factors in China. This result corresponds to the overall results we found 

on international spillovers in Figure 11. 

4.3 Production and Trade Elasticities 

We next investigate the quantitative importance of varying elasticities of substitution within the 

global network on the amplification of shocks on domestic inflation. We first examine how changing 

the elasticities of production impact the amplification of shocks to domestic inflation, and then move 

on to conducting a similar exercise for trade elasticities. 
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Figure 12. United States and Euro Area Inflation Rates: The Role of China 

(a) United States 
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(b) Euro Area 
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Note: This figure shows annual inflation implied by the baseline model (blue diamonds) relative to the headline CPI 
inflation in the data (black solid line) when feeding the model with all shocks and when feeding all shocks but sector-
level supply (orange plus). 2020Q2 highlights the Covid lockdown period, while 2021Q2 highlights a “base effect” 
that exist in macroeconomic time series, as economic activity had a huge rebound relative to the Covid lockdown 
phase once the economy reopened. 

We focus on how varying the elasticities of substitution in production impacts the effects of 

shocks to the energy sector. To do so, we vary the elasticity of substitution and reallocation of 

factors across sectors commonly used in the literature. The new higher-substitutability elasticities 

we feed into the model are (η, ε, θ) = (1.5, 1.5, 1.5).21 

Figure 13 presents simulation results when we vary production elasticities. We plot our baseline 

(‘Complementarities’) calibration with the one that imposes a higher elasticity of substitution 

across factors used in production (‘Substitution’) – note that these substitution parameters impact 

allocation across country-sector pairs. As can be seen, allowing producers to more easily substitute 

across factors substantially dampens the impact of energy shocks on inflation in both the US and 

the Euro Area. The impact of this difference in elasticities on inflation is notably larger in the Euro 

Area during the Russia-Ukraine War, which is unsurprising given the Euro Area’s higher exposure 

to the energy price shock. 

We next analyze the role of trade elasticities. To do so, we vary the trade elasticity parameters 

21We choose 1.5 for these elasticities because it represents the upper end of available short-run estimates in the 
literature. θ = 1.2 in the baseline of Carvalho, Nirei, Saito, and Tahbaz-Salehi (2021) and η = 1.5 in Table 1 
specification (vi) of Karabarbounis and Neiman (2014). Estimates of ε are typically below one at any horizon. 
For example, Peter and Ruane (2023) find this elasticity to be 0.6 at a 7-year horizon, and Boehm, Flaaen, and 
Pandalai-Nayar (2019) estimate this to be 0.03 in the short run. We take the extreme symmetric assumption 
(η, ε, θ) = (1.5, 1.5, 1.5) for parsimony to highlight the importance of complementarities in production. 
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Figure 13. Production Complementarities and Energy Shocks Transmission to Inflation 

(a) United States 
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(b) Euro Area 
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Note: This figure shows annual inflation implied by the baseline model (green ∗) relative to the model with high 
elasticities of substitution (pink diamonds). 

ξ over three possible values, {0.6, 1, 5}, for both the importing of consumption and intermediate 

goods. Varying these elasticities, conditional on holding production elasticities at their baseline 

values, is meant to capture how a change in the ease of access to different markets impacts the 

transmission of shocks to domestic inflation. These experiments help to further gauge the impact 

of global supply chain bottlenecks on inflation. Specifically, varying the elasticities from low (short-

run) to high (long-run) values will capture the ability of countries to substitute between suppliers 

for goods and services. 

Figure 14 presents the resulting inflation patterns from varying trade elasticities in the US 

and Euro Area. Unsurprisingly, allowing for greater substitution of consumption and intermediate 

goods from source countries along the global supply chain dampens the impact of shocks on domestic 

inflation. The impact of increasing elasticities is quite small for the US but has a substantial impact 

on the model exercises for the Euro Area. The higher elasticity dampening effect on the propagation 

of shocks to Euro Area inflation captures Europe’s higher exposure to foreign factors of production 

that is embedded in domestic consumption, as measured in the foreign Domar weights in Figure 2. 
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Figure 14. United States and Euro Area Inflation Rates: The Role of Trade Elasticities 

(a) United States 
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(b) Euro Area 
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Note: This figure shows inflation numbers when we introduce all shocks under different trade elasticities ξc = ξs = ξ. 
Blue diamonds represent our baseline model. Orange x use a high trade elasticity ξ = 5. Green + assumes a unitary 
trade elasticity, ξ = 1. 

4.4 Real Wages 

This subsection examines how closely the model is able to match real wages movements, both in 

the aggregate and across sectors. We focus on the US since detailed wage data at the sector-level 

level is more readily available for this country. Specifically, we use the non-farm business sector 

hourly compensation to measure nominal wages. These data come from FRED (code COMPNFB). 

We deflate the series using headline CPI to obtain our measure of real wages from the data. We 

similarly compute the real wage from the model by deflating the aggregate nominal wage by the 

overall price index. 

Figure 15 compares the behavior of real wages in the data and those generated by baseline 

model quantification exercise by plotting the year-on-year growth rate of real wages. The black line 

represents the data, and the blue diamonds depict model predictions. The model-generated series 

tracks the evolution of real wages observed in the data quite closely over the analyzed period for 

the United States, and it is consistent with the large increase in the real wage during 2020 and its 

subsequent decline over 2021–2022. 

We next take advantage of the model structure to examine its performance at the disaggregated 

level. This would not be possible without modeling the supply side across several sectors of the 

economy (along with the input-output structure) – an advantage of our methodological approach 
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absent in much of the other literature focusing on the pandemic inflation period. Specifically, we are 

able to study how well the model matches the evolution of sector-specific real wages. Performing 

this exercise is important because when labor is sector-specific and immobile across sectors, a 

key relative price is the real wage in units of the sector-specific price. For ease of exposition, 

we aggregate sectors into goods (durables, non-durables, and energy) and services.22 Figure 16 

compares the model to the data for sector-level real wages in the goods sector in panel (a) and the 

service sector in panel (b).23 

Overall, in the model and the data, goods and services real wage growth was positive during 

2020 before declining over the 2021–2022 period. The model matches the overall behavior of real 

wages in the goods sector, as shown in panel (a), with an initial positive growth and subsequent 

fall in the real wage. While we over-predict real wage growth from 2020 until mid-2021, the model 

captures the magnitude of the decline in real wage growth from mid-2021 onward. In contrast, 

panel (b) shows that the model results closely track the real wage growth in the service sector in 

2020 but underpredict this sector’s real wage growth starting in 2021. This result suggests that 

the service sector price increases faster than its wage. In our model, this means that other factor 

prices — wages and, notably, the price of capital in other sectors — went up more than wages in 

the service sector. 

Figure B.2 in the appendix plots the nominal wages for the goods and services sector. The model 

predicted behavior of nominal wages in the service sector (reported in panel (b)) closely tracks the 

time series of nominal wages observed in the data. Thus, the reason why the model does not track 

real wages for services is due to the model overstating increases in the service sector’s price growth, 

especially during 2021. As we analyze in the following subsection, the services sector price indeed 

increased more in our model than in the data. We believe this is due to missing granularity in 

sector-level prices in the data as the latter combines the increase in, for example, grocery delivery 

prices with the decrease in restaurant prices, leading to a flat pattern of the service sector price. 

To sum up, the sector-specific real wage growth patterns are consistent with sector-level labor 

supply declines that initially put upward pressure on sector-level real wages during the initial phase 

of the pandemic, coupled with increases in labor demand driven by positive aggregate demand 

22We do this for the model and data based on each sector’s nominal wage and price levels. 
23Figure B.1 shows each sector nominal wages deflated by the overall price level instead of sector-specific prices. 

We find similar results. 
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Figure 15. Real Wage Changes 
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Note: This figure shows year-on-year real wage growth rate. Nominal wage corresponds to total private sector 
hourly earnings series from the Bureau of Labor Statistics, codes CES0500000003. We deflate this measure using 
headline CPI. The black line represents the data. Blue diamonds are model-based predictions. 

shocks starting at the end of 2020. The story in 2021 and 2022 is a recovery in sector-level 

employment supply and demand, with a corresponding decline in real wages. These findings suggest 

that sector-level labor supply played a key role in real wage dynamics during 2020–2022. 

4.5 Sector-level Price Inflation 

We next examine how well the model matches observed sector-level price movements, focusing 

on the US again. Figure 17 plots US sector-level price inflation. Overall, the model-predicted 

inflation rates match the data well for the US. However, as in the case of aggregate CPI inflation 

presented above, the model tends to over-predict inflation quite a lot during the reopening period.24 

Goods inflation (durables, non-durables, and energy) was initially weakly positive and increased to 

stabilize around 2021 in both the non-durables and energy sectors, while it declined in the durables 

sector during this period. The continuous increase in the non-durables and energy sector prices 

helps to explain the real wage growth decline in the goods sector we observed since 2021 in panel 

24See Figure B.3 for the shock decomposition of the sector-level price inflation series. 
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Figure 16. Sector-Specific Real Wages Growth 

(a) Goods 
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(b) Services 
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Note: This figure shows sector-specific real wage growth. Black lines represent the data, while blue diamond 
represents the model. We compute real wages by deflating nominal wages in that sector by the sector-level price. 
All numbers are year-on-year growth; each panel shows the real wage growth for a different sector. In the model, 
we aggregate nominal wage growth across the durables, non-durables, and energy sectors to construct nominal wage 
growth in the goods sector. We subtract goods inflation from nominal wage growth to construct real wage growth in 
the goods sector. We source sector-level nominal wages from the Bureau of Labor Statistics average hourly earnings 
series with codes: CES0600000003 (goods) and CES0800000003 (services). We source sector-level prices from FRED 
with codes: CUSR0000SAC (goods) and CUSR0000SASLE (services). 

(a) of Figure 16. Conversely, the model predicts a significant and persistent increase in service 

inflation, which is larger than in the data from 2021 onwards. As we have articulated in the above 

section, we believe this is due to the missing granularity in sector prices data where higher prices of 

shelter and online services and lower prices in contact-intensive services sectors are averaged out in 

service sector prices. These dynamics in service prices help explain why the model-predicted real 

wage growth in the services sector reported in panel (b) of Figure 16 was negative during the latter 

half of the sample period. 
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Figure 17. United States Sector-level Price Inflation 

20
20

Q1

20
20

Q2

20
20

Q3

20
20

Q4

20
21

Q1

20
21

Q2

20
21

Q3

20
21

Q4

20
22

Q1

20
22

Q2

20
22

Q3

20
22

Q4 
-5 

0 

5 

10 

15 

20

 In
fl

at
io

n
, %

 

Durables 

20
20

Q1

20
20

Q2

20
20

Q3

20
20

Q4

20
21

Q1

20
21

Q2

20
21

Q3

20
21

Q4

20
22

Q1

20
22

Q2

20
22

Q3

20
22

Q4 
-5 

0 

5 

10 

15 

20 
Services 

20
20

Q1

20
20

Q2

20
20

Q3

20
20

Q4

20
21

Q1

20
21

Q2

20
21

Q3

20
21

Q4

20
22

Q1

20
22

Q2

20
22

Q3

20
22

Q4 
-20 

-10 

0 

10 

20 

30 

40

 In
fl

at
io

n
, %

 

Non-Durables 

20
20

Q1

20
20

Q2

20
20

Q3

20
20

Q4

20
21

Q1

20
21

Q2

20
21

Q3

20
21

Q4

20
22

Q1

20
22

Q2

20
22

Q3

20
22

Q4 
-20 

-10 

0 

10 

20 

30 

40 
Energy 

Model 
Data 

Note: These figures plot year-on-year sector-level model-based inflation rates implied for all shocks (blue diamonds) 
and actual inflation (black lines) for the US. Data comes from FRED. Codes: Durables CUSR0000SAD, Non-durables 
CUSR0000SAN, Services CUSR0000SASLE, Energy CPIENGSL. 
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5 Conclusion 

This paper estimates a multi-country multi-sector general equilibrium model to quantify the drivers 

of global and domestic inflation during 2020–2023. Given the global nature of the model, we 

also measure inflation spillovers across countries. The baseline quantification exercise produces 

aggregate inflation rates that match those observed in the data across countries, as well as being 

able to explain movements in sector-level prices and wages that are similar to those observed in 

the data. The model is also able to match endogenous exchange rates and current accounts in the 

data. This is an important feature given the open economy dimension of our work that takes into 

account both trade and production linkages globally. 

The model further allows us to conduct a shock decomposition exercise, which quantifies the 

drivers of inflation in each phase of the pandemic-inflation period. This exercise shows that infla-

tion began due to pandemic-related supply shocks in factor markets and increased further due to 

expansionary fiscal and monetary policies that stimulated aggregate demand. The reallocation of 

consumption across sectors combined with energy shocks also played important roles in the global 

amplification of shocks together with the complementarities in production. We highlight this nar-

rative that we quantify in the introduction by a quote from Chairman Powell. The overarching 

policy implication of our paper is that, in a world with more supply shocks (a fragmented and 

de-globalized world), at sector or at the aggregate level, we will see more inflation, regardless of 

the fact that monetary policy stays restrictive. 
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A Additional Tables 

Table A.1. Sector-level Labor Shares 

Euro Area United States Rest of the World Russia 

Durables 0.61 0.57 0.43 0.44 
Non-Durables 0.57 0.44 0.56 0.56 
Services 0.54 0.59 0.68 0.68 
Energy 0.39 0.11 0.25 0.25 

Note: This table shows the share of value-added that accrued to labor. Value added is compensation to employees 
(labor) plus gross operating surplus (capital). Data comes from the Structural Analysis Database (STAN) year 2018 
to be consistent with the ICIO tables we use to compute other relevant shares. 
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B Additional Figures 

Figure B.1. Sector-Specific Real Wages Growth: Sectoral wages deflated by aggregate price 

(a) Goods 
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(b) Services 
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Note: This figure shows sector-specific real wage growth. Black lines represent the data, while blue diamond 
represents the model. We compute real wages by deflating nominal wages in that sector by the aggregate price. All 
numbers are year-on-year growth, and each panel shows the real wage for a different sector. In the model, we aggregate 
nominal wage growth across the durables, non-durables, and energy sectors to construct nominal wage growth in the 
goods sector. We subtract overall inflation from this number to construct real wage growth. We source sector-level 
nominal wages from the Bureau of Labor Statistics average hourly earnings series with codes: CES0600000003 (goods) 
and CES0800000003 (services). Aggregate price corresponds to code CPIAUCSL (headline CPI). 

Figure B.2. Sector-level Nominal Wage Growth United States 

(a) Goods 
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(b) Services 
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Note: This figure shows nominal wage growth (year on year) implied by the baseline model (blue diamonds) relative 
to the data (black lines). 
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Figure B.3. Sector-level Prices United States: Decomposition 
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(b) Non-Durables 
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(c) Services 
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(d) Energy 
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Note: This figure shows annual inflation implied by the baseline model (green ∗) relative to the model with high 
elasticities of substitution (pink diamonds). 

53 



C Proofs 

Proof of Proposition 1 

The rich structure that we introduced in our model can be simplified to capture the first-order 

effect of shocks on inflation. Here, we will just focus on factors, goods and consumption ignoring 

the bundling at different levels. Starting from Equation (3), we can write production in terms of 

all other sectors and factors as: 

Yni = AniFni 

 
{Xni,mj}mj∈S , Lni, Kni 

 
, 

where Fni is a nested CES function, S is the set of all country-sector pairs and Xni,mj denotes 

the amount of output of country-sector mj used by ni. With this, we can write the firm profit 

maximization problem as: 

πni = PniYni − 
 

mj∈S 

PmjXni,mj − WniLni − RniKni. 

Using Shepard’s Lemma, we can write the change in prices in terms of price changes of all other 

sectors and factor price changes as: 

d log Pni = −d log Ani + 
 

mj∈S 

Pmj Xni,mj 

PniYni 
d log Pmj + 

WniLni 

PniYni 
d log Wni + 

RniKni 

PniYni 
d log Rni. 

Recall that: 

Xni,mj = Xn,mj 
Xni,j 

Xn,j 
. 

At steady state, define the country-sector to country-sector input-output matrix as: 

Ω SS 
ni,mj ≡ 

Pmj Xni,mj 

PniYni 
= 

Pmj Xn,mj 

PniYni 

Pn,j Xni,j 

Pn,jXn,j 

= 

 
Pmj Xn,mj 

Pn,jXn,j 

 
Pn,j Xni,j 

PZ 
ni Zni 

 
PZ 
ni Zni 

PniYni 

 

= Ω X 
n,mj Ω Z 

ni,j Ω Y 
ni,Z . 
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Similarly, we write the labor and capital shares as: 

Ω SF,L 
ni ≡ 

WniLni 

PniYni 
= 

 
WniLni 

P VA 
ni VAni 

 
P VA 
ni VAni 

PniYni 

 

= Ω VA 
ni,L Ω Y 

ni,VA , 

Ω SF,K 
ni ≡ 

RniKni 

PniYni 
= Ω VA 

ni,K Ω Y 
ni,VA . 

Finally, the consumption share of country-sector mj is expressed as: 

Ω CS 
n,mj ≡ 

PmjCn,mj 

PnCn 
= 

 
PmjCn,mj 

P CB 
n,j Cn,j 

 
P CB 
n,j Cn,j 

PnCn 

 

= Ω CB 
n,mj Ω C 

n,j . 

With these definitions, we can write the changes in prices in vector notation with (and combining 

capital: 

d log P = −d log A + Ω SS d log P + ΩSF,Ld log W + ΩSF,K d log R. 

Defining the Leontief inverse for ΩSS : 

Ψ SS = 
 
I − Ω SS −1 

, 

we can solve for the price changes in terms of productivity change and factor price changes: 

d log P = −Ψ SS d log A + Ψ SS ΩSF,Ld log W − Ψ SS ΩSF,K d log R. 

Similarly, the CPI can be written as the weighted average of the good prices with weights ΩCS 
n,mj . 

With this, the CPI can be written as: 

d log CPIn = 
 

mj 

Ω CS 
n,mj d log Pmj = Ω CS 

n d log P, 

where ΩCS 
n is the nth row of the ΩCS matrix. Combining with the price change equation, we can 

write the CPI change as: 

d log CPIn = −Ω CS 
n Ψ SS d log A + Ω CS 

n Ψ SS ΩSF,Ld log W − Ω CS 
n Ψ SS ΩSF,K d log R. 
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Let’s define the country-specific Domar weight for the labor: 

(Λn)T ≡ Ω CS 
n Ψ SS ΩSF,L 

as the share of expenditures of country n that ends up in the owners of Lmj . We can write a similar 

expression for capital with 

(κn)T ≡ Ω CS 
n Ψ SS ΩSF,K . 

Since the factors are where all the payments are accumulated, sum over these Domar weights equal 

to 1:  

mj 

Λn 
mj + κn 

mj = (Λn)T 1J N + (κn)T 1J N = 1, 

where 1J N is a vector of ones of a dimension J N . Similarly, we can define the country-specific 

sector Domar-weights as: 

(λn)
T = Ω CS 

n Ψ SS . 

Hence, the CPI can be written as: 

d log CPIn = −(λn)
T d log A + (Λn)T d log W − (κn)T d log R. 

The Domar weights for labor and capital also satisfy: 

Λn 
mj = 

WmjL
n 
mj 

In , 

where Ln 
mj is the portion of the labor in mi that could be attributed to country n. Hence, we can 

write the change in wages in terms of their Domar weights as: 

d log Wmj = d log Λn 
mj − d log Ln 

mj + d log I n = d log Λn 
mj − d log Lmj + d log I n . 

In the last equality, we made the assumption that the labor change reduces proportionately regard-

less of the destination. Therefore, we can drop the country superscript. For the rental rate: 

d log Rmj = d log κn 
mj − d log K n 

mj + d log I n = d log κn 
mj + d log I n , 
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since capital levels are assumed to be constant. With these, we can write the CPI as: 

d log CPIn = −(λn)
T d log A + (Λn)T d log Λn − (Λn)T d log Ln 

+ ((Λn)T 1J N + (κn)T 1J N )    
=1 

d log I n + (κn)T d log κn 

= −(λn)
T d log A + (1J N )

T dΛn + (1J N )
T dκn    

d[(1J N )T Λn+(1J N )T κn]=d(1)=0 

−(Λn)T d log Ln + d log I n 

= d log I n − (Λn)T d log Ln − (λn)
T d log A, 

where in the second equality we used the fact that: Lmj d log Lmj = d Lmj . 
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