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Abstract: 
 
Decades of research in ecology have shown that nestedness is a ubiquitous 
characteristic of both, biological and economic ecosystems. The dynamics of 
nestedness, however, have rarely been observed. Here we show that the nestedness 
of both, the network connecting countries to the products that they export and the 
network connecting municipalities to the industries that are present in them, 
remains constant over time. Moreover, we find that the conservation of nestedness is 
sustained by both, a bias for industries that deviate from the networks' nestedness 
to disappear, and a bias for the industries that are missing according to nestedness 
to appear. This makes the appearance and disappearance of individual industries in 
each location predictable. The conservation of nestedness in industrial ecosystems, 
and the predictability implied by it, demonstrates the importance of industrial 
ecosystems in the long term survival of economic activities. 
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Introduction 
 
One of the best-documented findings of macro ecology is that rare species inhabit 

predominantly diverse patches, while ubiquitous species tend to inhabit both, diverse and 
non-diverse locations1-4. In ecology, the term nestedness is used to refer to this pattern, 
which has been observed numerous times in geographic patterns1-4 and mutualistic 
networks5-8 

In the case of mutualistic networks, nestedness implies that ecosystems are 
composed of a core set of interactions to which the rest of the community is attached5. The 
nestedness of interaction networks also implies that specialist species interact mostly with 
generalist species, and because generalist are less fluctuating9, nestedness can help 
enhance the survival of rare species 10. Moreover, nestedness enhances biodiversity11 and 
overall ecosystem stability12, making nestedness an important feature of  interaction 
networks. 

Nestedness, however, is a general network measure that can be used to characterize 
non-biological ecosystems, such as global and local economies. In fact, in the past, the 
nestedness of economic systems has been described for interaction networks, connecting 
industries to other industries, such as Leontief's input-output matrices13, or supply 
relationships in the case of the New York Garment industry14,15. Here, instead, we study the 
dynamics of the geographic presence of industries by looking at their physical locations 
and find nestedness to be conserved over time. We do this by using Atmar and Patterson's 
Temperature metric16,17 and Almeida-Neto et al's NODF18,19, together with dynamic null 
models. Finally, we use the conservation of nestedness to predict the appearance and 
disappearance of industries at locations by showing that deviations of nestedness are 
associated with increases and decreases on the probability that an industry will appear or 
disappear at a given location.  

 
Data & Methods 
 
At the international level we use yearly trade data connecting 114 countries to 772 

different products between 1985 and 2009. Going forward, we refer to this as the country-
product network. We consider a country to be connected to a product if that country's 
exports per capita are larger than 25% of the world's exports per capita in that product for 
at least five consecutive years. This thresholds reduce the noise in the country product data 
coming from re-exports and helps make sure that a country is connected to the products 
that they export substantially and consistently. In the Supplementary Material we check for 
the robustness of our results by using a different definition of presences and absences 
based on Balassa's20 Revealed Comparative Advantage (RCA) and find the results to be 
robust to this change in the definition of presences.     

We note two important limitations of international trade data. First, it does not 
include products that are produced and consumed domestically. This is because it only 
considers a product once it has crossed an international border. Second, trade data is 
limited to goods, and therefore does not include any data on services. Despite these 
limitations, trade data is good for international comparisons because it is collected in a 
standardized classification that makes data for different countries comparable.  
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At the domestic level we use information on the tax residence of Chilean firms 
collected by Chile's Servicio de Impuestos Internos (SII), which is the equivalent of the 
United States Internal Revenue Service (IRS). Going forward, we refer to this dataset as the 
municipality-industry network. The municipality-industry network contains information 
on 100% of the firms that filed value-added and/or income taxes in Chile between 2005 
and 2008 and comprises firms from all economic sectors, whether they export or not, and 
whether they produce goods or services. This data set consists of the universe of Chilean 
firms (nearly 900,000) which are classified into 700 different industries and assigned to 
each of Chile's 347 municipalities. Here we consider an industry to be present in a 
municipality if one or more firms, filing taxes under that industrial classification, declare 
that municipality as their tax residency.  

Finally, we note that the Chilean tax data has the limitation that the tax residency of 
a firm can differ from the location of all of its operations. Going forward, we take the fact 
that our results hold in both, international trade and domestic tax data, as an indication 
that they are not driven by the limitations of each of these data sets and that they represent 
a natural characteristic of the economic ecosystem that underpins each of them. For more 
details on both datasets see SOM. 
  



4 
 

 
 

Figure 1 The nestedness of international and domestic economies. a Country-product network for the year 2000. b 
Municipality-industry network for the year 2005.  c Bascompte el al. null model for the matrix shown in a. d Bascompte el 
al. null model for the matrix presented in b. In a-d red lines indicate the diversity of a location and the ubiquity of an 
industry.  e Evolution of the density of the country-product network between 1985 and 2009. f Evolution of the 
temperature of the country-product network between 1985 and 2009 (green), its corresponding  Bascompte et al. null 
model (blue, upper and lower lines indicate 95% conf. intervals), and that of a matrix that started identical to that for 
1985, but that was evolved by considering an equal number of appearances and disappearances than in the original data 
(red, upper and lower lines indicate 95% conf. interval). g Same as f but using NODF. h Same as f but for the municipality-
industry network i Same as h but using NODF.  

 
Results 
 
Figures 1 a and b show the country-product  and the municipality-industry matrices 

(Respectively, T=15.08 and T=7.50 and NODF=70.81 and NODF=83.35. We note that T and 
NODF have opposite relationships to nestedness: T=0 and NODF=100 indicate perfect 
nestedness, whereas T=100 and NODF=0 indicate no nestedness)21. Here, the red lines 
indicate the diversity of each country and the ubiquity of each product -the number of 
locations where it is present- (see SM). These lines are used as a guide to indicate where 
presences would be expected to end if the nestedness of these networks were to be perfect. 
They can be thought of a simplified extinction line17. Figure 1 c and d show their 
corresponding Bascompte et al. null models5. In the Bascompte et al. null model, the 
probability to find a presence in that same cell of the matrix is equal to the average of the 
probability of finding it in that row and column in the original matrix. The figures show that 
nestedness of the original networks is clearly larger than that of their respective null 
models, showing that industrial ecosystems are more nested than what would be expected 
for comparable networks (respective null model temperatures of 51±1  and 54.5±0.7 and 
NODF of 35.0±0.6 and 46.5±0.3, errors are 9%% conf. intervals calculated from 100 
implementations of the null model). 

Next, we study the temporal evolution of nestedness. In the case of the country-
product network, where a larger time series is available (1985-2009), the percentage of 
presences almost doubled during the observation period (Figure 1 e), going from less than 
15% to nearly 25%. In the case of the municipality-industry network, presences went up 
from 22.9% to 25.7% between 2005 and 2008. The nestedness of both, the country-
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product and the municipality-industry networks, however, remained relatively stable 
during this period, as measured by both Temperature and NODF (green lines in Figure 1 f-
i). 

We test the constancy of these networks' nestedness by comparing them with two 
null models. The first one is an ensemble of null models5 calculated for each respective year 
(blue lines in Figure 1 f-i). This shows that the nestedness of the empirical networks is 
always significantly higher than their randomized counterpart. Then, we show that a 
network subject to the same turnover dynamics would have lost its nestedness during the 
observation period. We do this by randomly adding and subtracting a number of links 
equal to the one gained or lost by the original network. We do this following the probability 
distributions defined by the Bascompte et al5 null model to make sure that these additions 
and subtractions keep the degree sequence of the network close to the original. This 
dynamic null model preserves the exact density of the network and also the number of 
links that appeared and disappeared each year in each country and each product. Yet, it 
does not preserve nestedness. This shows that when the location of the links that appeared 
and disappeared is chosen differently from that observed in reality, the nestedness of the 
network quickly evaporates (red line in Figure 1 f-i). Hence, we conclude that the 
nestedness of these networks has remained much more stable than what would be 
expected from networks with the same general turnover dynamics.  
 Next, we show that nestedness predicts the appearance and disappearance of 
industries in locations. For the country-product network we consider as an appearance an 
increase in exports per capita from less than 5% of the world average to more than 25%. 
To make sure that we are capturing structural changes and not mere fluctuations, we ask 
the increase in exports per capita of a country to be sustained for at least 5 years. Hence, 
our final year of observation is 2005. Conversely, we count disappearances as a decrease in 
exports per capita of a country from 25% or more of the world's average to 5% or less (also 
sustained for at least 5 years). For the municipality-industry network we count 
appearances as changes from zero industries to one or more, and disappearances as 
changes from one or more industries to zero. 
 Figure 2 a-d visualizes the position in these networks' adjacency matrices of the 
industries that were observed to appear (green) and disappear (orange) in the intervening 
period. We predict these appearances and disappearances by fitting each observation in 
the industry-location network using a probit model that considers only information on the 
diversity of the location and the ubiquity of the industry for the initial year (see SM):  
 

   (1) 
 

Here  is the industry-location network's adjacency matrix,  is the diversity of 
location c at time t (defined as its degree centrality or  ),  is the ubiquity 
of product p at time t (defined as its degree centrality or ), and where we 
have also added an interaction term taking the product between diversity (  and 
ubiquity (  . The error term is represented by .  
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Figure 2 Nestedness predicts appearing and disappearing industries. a The country-product network for the year 1993 is 
shown in grey. Green dots show the location of industries that were observed to appear between 1993 and 2000. b Same 
as a, but with the industries that disappeared in that period shown in Orange. c The municipality-industry network is 
shown in grey and green dots show the location of industries that were observed to appear between 2005 and 2008. d 
Same as c, but with the industries that disappeared in that period shown in Orange.  e-h Deviance residuals of the 
regression presented in (1) applied to the presences-absences shown in a-d. i-l ROC curves summarizing the ability of the 
deviance residuals shown in e-h, to predict the appearences and dissapearences highlighted in a-d.  
  
 In general, we find that the probit regression accurately explains presences and 
absences (average Efron's pseudo-R2=0.53±0.02 for the country-product network and 
0.54±0.01 for the municipality-industry network). This shows that, as it is expected from a 
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nested network, the marginal sum of the adjacency matrix's rows and columns are enough 
to make an accurate guess of the presence or absence of that industry in that location. Here, 
however, we use the deviance residuals of this regression to predict future appearances 
and disappearances. Negative residuals, represent unexpected absences2  and are used to 
rank candidates for new appearances. Positive deviance residuals, on the other hand, 
represent unexpected presences2 and are used to rank the likelihood that an industry will 
disappear in the future. (Figures 2 e-h).  
 Finally, we quantify the accuracy of these predictions using the area under the 
Response Operator Characteristic curve or ROC curve22,23. An ROC curve plots the True 
Positive Rate of a prediction criterion as a function of its False Positive Rate. The Area 
Under the Curve, or AUC, is commonly used to measure the accuracy of the prediction 
criterion22,23. A random prediction will find true positives and false positives at the same 
rate, and therefore will give an AUC of 0.5. A perfect prediction, on the other hand, will find 
all true positives before hitting any false positive and will be characterized by an AUC=1. 
Figures 2 i-l show the ROC curves obtained when the appearances and disappearances 
shown in Figures 2 a-d are predicted using the deviance residuals obtained from (1) for 
data on the initial year. In all cases, the ROC curves of these predictions (in blue), have an 
area that is significantly larger than the one expected for a random prediction (in red), 
showing that nestedness can help predict which links in these industry-location networks 
are more likely to appear or disappear. 
 Finally, we extend this analysis to all pairs of years. Figures 3 a and b show the 
number of events (appearances or disappearances) for each pair of years for the 
international trade data. As expected, there are fewer events for pairs of years that are 
close by in time. Also, we note that the number of appearances is larger than that of 
disappearances, a fact that is consistent with the observed increase in the density of the 
network. Figure 3 c shows the AUC value obtained for each pair of years, showing that for 
the country product network, disappearances (Fig 3 b) are predicted much more 
accurately than appearances.  
 The time series data available for Chile's municipality-industry network is much 
more limited. Hence, we show the average number of events (Figure 3 d), and the average 
AUC for networks separated by a given number of years (Figure 3 e). Here, we find that 
predictions of appearances and disappearance are both remarkably strong, and that  there 
is no statistically significant difference in the predictability of both kinds of events.   
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Figure 3 Predicting appearances and disappearances using nestedness. a Number of appearances for every pair of years 
in the country-product network. b Number of disappearances for every pair of years for the country-product network. c 
Accuracy of the predictions for each pair of years measured using the Area Under the ROC Curve (AUC). d Average 
number of appearances and disappearances for the Chilean data (error bar smaller than symbol). e Average accuracy of 
the predictions for the municipality-industry network. Error bars indicate 99% confidence intervals. f Distribution for the 
distance to the diversity-ubiquity line obtained for the observed appearances and for an equal number of random 
appearances. g Same as f but for disappearances. h Same as f, but for the municipality-industry network. i Same as h but 
for disappearances. 
 

To conclude, we look at the position in the network's adjacency matrix of 
appearances and disappearances. If the stability of nestedness is related to the location in 
this matrix of industrial appearances and disappearances, then appearances should be 
closer to the diversity-ubiquity line than random appearances. By the same token, 
disappearances should be farther away. For each event, we estimate its distance to the 
diversity and the ubiquity lines illustrated in figures 1 a-d and figures 2 a-d  using 

  (2) 

Here  and  are respectively the lines of diversity and ubiquity (see SM),  is 
the position in the adjacency matrix of the ith event, and Nc and Np are respectively the 
number of locations and industries in the network. We use Nc and Np to normalize the 
maximum possible vertical and horizontal distances to 1 and thus make sure that the 
measure is less sensitive to the rectangularity of the different matrices. The || operator 
represents the Euclidean distance and  = 1 if the position of the event is 
outside of the nested area defined by both   and   and -1 otherwise (see SM). As a 
benchmark comparison we consider an equal number of appearances and disappearances, 
but draw these from a random set of eligible positions in the adjacency matrix.   

Figure 3 f-i compare the distributions of distances (D) with those associated with an 
equal number of random appearances or disappearances. We find that appearances tend to 
lie significantly closer to the diversity/ubiquity lines than what would be expected for an 
equal number of random events (ANOVA F=59,935, p-value=0 for the country-product 
network and ANOVA=10895 p-value=0 for the municipality-industry network). In the case 
of disappearances, the opposite holds true. The observed appearances tend to be mostly 
located outside of the nested area defined by the diversity/ubiquity lines. Our random 
expectation, however, would be for disappearances to come mostly from the highly 
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populated area inside the diversity/ubiquity lines. Once again, differences between 
observations and null model expectations are highly significant for both networks (ANOVA 
F=6246 p-value=0 for the country-product network and ANOVA F=6463 p-value=0 for the 
municipality-industry network). 

These results show that both, the global and domestic economic structures explored 
in this paper, evolve following a pattern in which unexpected absences are more likely to 
become the future locations of an industry and where unexpected presences signal 
industries that are more likely to disappear from a location. Overall, this dynamics helps 
keep the nestedness of these networks constant across time. 

 
Discussion 
 
In this paper we showed that industry-location networks are nested, just like 

industry-industry networks13-15, or their biological counterparts1-4,16,17. Using time series 
data for both, international and domestic economies, we showed that the nestedness of 
these networks tends to remain constant over time and that this empirical conservation 
law can be used to predict the pattern of industrial appearances and disappearances.  

The strong link between biological and industrial ecosystems opens a variety of 
questions.  First, are the models currently used to explain nestedness able to explain its 
conservation across time? Second, is the geographical nestedness described in this paper a 
consequence of industry-industry nestedness, or are these independent phenomena? Third, 
are the mechanisms generating nestedness at the global level the same that generate 
nestedness at the national level? 

In this paper we showed that the geographical nestedness of industries holds at 
both, the global and at the national scale. This is certainly not the case for biological 
ecosystems, since the biota of the artic is not a subset of that of the rain forest. The fact that 
the nestedness of industrial ecosystems holds at scales as large as that of the world 
economy suggests that the coupling between international economies is strong. This 
highlights the importance of understanding the global economy as a unified ecosystem, 
since after all, its nestedness suggests that it is working as one. 

The predictability implied by nestedeness, on the other hand, has important 
implications in a world where income is connected to the mix of products that a country 
makes24,25. Ultimately, the dynamics implied by nestedness could represent a fundamental 
constraint to the speed at which international incomes could either converge or diverge. 

More research will certainly need to be done on both, the causes of the structures 
and the time patterns that were uncovered in this paper. This will require strengthening 
the bridge between the natural and social sciences because, if there is something that the 
nestedness of economies show, is that humans tend to generate patterns in social systems 
that strongly mimic those found in nature26,27. 
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International Trade Data: 

 The international data set is a merge of two data sources: The Feenstra et al. (2005) 

data set, which has data for the years prior to 2000, and the UN Comtrade database 

(comtrade.un.org), which we used for the period going from 2001 to 2009. Both dataset 

follow the product classification established by the Standard International Trade 

Classification (SITC) revision 2*.  In the UN Comtrade dataset we associated countries to 

products according to what was reported as exports to the WLD category (World). For the 

products in which no exports to WLD (World) was found, exports were reconstructed using 

the reports from importing countries, when available, and by aggregating the reported 

bilateral exports of the exporting country as a last resource. We prioritize imports over 

exports because imports tend to be more tightly controlled than exports.  

 While the Feenstra et. al (2005) data set contains trade starting 1962, we chose 

1985 as our starting year because there are several reclassifications of the data that affect 

their reliability for previous years (see SM2 Data Continuity). Since presences are averages 

over 5 years, the first year that is included in our dataset is 1981 (in the counting of 

presences for 1985). 

 We find, however, that international trade data is characterized by a nested matrix 

even for the years that we do not include in this paper. Figure SM1 shows the Temperature 

and NODF calculated for all years. Our choice to restrict the number of years in the dataset 

was performed to reduce the number of false appearances and disappearances that could 

be introduced by reclassifications of the SITC categories. 

  

                                                        
* For more information visit http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=8&Lg=1 
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Figure 1 - Temperature and NODF for all years 

 

Figure SM4 The nestedness of international trade data from 1966 to 2009. 

 Finally, we restrict the sample of countries for all those that have a population of at 

least 1.25 million in the year 2000. We also remove countries from the Former Soviet 

Union (FSU), because this countries lack data for the 1980's, and have noisy data for the 

early 1990's. For Germany, we use data on West Germany for the years prior to 1992. 

 The final dataset consists of 114 countries and 775 products, classified according to 

the SITC4 rev2 classification (http://reportweb.usitc.gov/commodities/naicsicsitc.html). 

The datasets includes only tradable products, from raw materials and agriculture, to 

manufactures and chemicals. 

Domestic Tax Data: 

 The domestic data for Chile consists of a matrix indicating the number of firms from 

a given industry in each municipality. The data has records for the year 2005, 2006, 2007 

and 2008 and is based on the fiscal residence of each firm (it is hence a firm, and not a 

establishment level dataset). The number of firms reported for each year is shown in table 

1.  
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Year Number of Firms 

2005 862,405 

2006 876,948 

2007 891,383 

2008 899,156 

             Table 1: Number of Firms in the Chilean Tax Data 

 These data contains information on the universe of Chilean firms and includes firms 

from all economic sectors, from raw materials and manufacturing, to restaurant, retail and 

banking services. The data contains information for 347 municipalities and 700 industries 

classified according to the Código the Actividad Económica (CAE) 

(http://www.sii.cl/catastro/codigos.htm). 

PRESENCE-ABSENCE MATRIX DEFINITION: 

 For the international trade data set, we define the presences of an industry in a 

country if that country has exports per capita that are at least 25% of the world average for 

5 consecutive years. Formally, we do this following: 

 

 Where Mcp is the presence-absence matrix, EXPcp are the exports of product p by 

country c, and Pc is the population of country c. For the domestic tax data, we define as a 
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presence a municipality that has one or more firms filing taxes under that industrial 

classification. We use a single year in this case. 

 

 

 

NESTEDNESS METRICS:  TEMPERATURE AND NODF 

  

 We calculate the nestedness of the exports per capita absence-presence matrices 

using both, Atmar and Patterson’s temperature metric and Almeida-Neto et al.’s NODF 

metric. Preparation of these matrices for both analyses is similar. For the temperature 

metric, the rows and columns of a matrix are sorted and rank-ordered to yield a nested 

matrix with the absolute minimum temperature possible for this matrix.  For the NODF 

metric, the rows and the columns of a matrix are swapped and rank-ordered by the sum of 

the presences in each of these rows and columns, respectively. The transformed matrices 

are then ready to be processed by the following algorithms. For a more detailed 

explanation, please reference the respective works of Atmar and Patterson (1993) and 

Almeida-Neto et al. (2008). Also the review by Ulrich, Almeida and Gotelli (2009) is a good 

place to learn about both of these metrics.   

ATMAR AND PATTERSON’S TEMPERATURE MEASURE 

 Atmar and Patterson's temperature metric calculates the number and the degree of 

unexpected presences and absences in an ordered adjacency matrix. Unexpected presences 

and absences are calculated with respect to an extinction line that separates the adjacency 

matrix into two areas: The top-left triangle, which we will call Section 1, where only 
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presences are expected to appear, and the bottom right triangle, which we call Section 2, 

where only absences are expected (Figure SM2). In a perfectly nested matrix an ideal 

extinction line is a skew diagonal bisecting the matrix, where all of the presences are to one 

side of the line and all of the absences are to the other side. 

 

Figure SM2: A Perfectly Nested Matrix with M Rows and N columns 

 Presences in Section 1 that are closer to the extinction line are considered more 

likely to face extinction. A presence in Section 2, on the other hand, is considered an 

unexpected presence. Thus, the distance from the extinction line captures the degree of 

unexpectedness of presence. Conversely, absences in Section 1 are considered unexpected 

absences.  

 A perfectly nested matrix is characterized by a temperature of zero degrees. 

Alternatively, a fully disordered matrix is characterized by a temperature of 100 degrees.  

 The degree of “unexpectedness” for any presence or absence is the squared ratio of 

its distance, dij, to the ideal extinction line, Dij. This local unexpectedness is expressed as:  
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 The degree of unexpectedness for the matrix, U, is the sum of each of these local 

unexpectedness values. This sum is normalized by the number of rows (m) and columns (n), 

to ensure the measure is unaffected by the size or the shape of the adjacency matrix:  

 

 The total unexpectedness is transformed to a temperature scale using a 

normalization factor. The temperature scale goes from 0 degrees, corresponding to a 

perfectly ordered matrix, to 100 degrees, indicating a matrix full with unexpected values: 

 

where Umax is 0.04145.  

Almeida-Neto et al.’s NODF Measure 

 The Nested Overlap and Decreasing Fill, or NODF metric, measures the degree of 

overlap between an adjacency matrix's rows and columns. NODF is determined by 

comparing all row-row and all column-column pairs.  A row-row pair ij is any row i paired 

with each row above it, row j, in an ordered matrix. Similarly, a column-column pair ij is 

any column i paired with each column behind it, column j, in an ordered matrix. This is first 

achieved by calculating the Paired Overlap, POij, for each row-row and each column-column 

pair. POij is calculated as the percentage of presences in row or column i that are also 

present in row or column j: 
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where MTj is marginal total, the sum of presences in row or in column j, and Oij is the 

number of presences overlapping between the row-row or the column-column pair.  

     Figure SM3: An Ordered Matrix† 

For example, consider rows r1 and r2 from Figure 2: 

 

 

Figure SM3a: A Sample Row-Row Pair from the Matrix in 

Figure SM3 

In figure SM3a, r2 – the less populated row with three presences – overlaps with two 
presences in r1 – the more populated row. The POij for the r1-r2 pairing is thus two 
presences divided by three presences, or PO12 = 66.67%. Similarly for columns, consider 
figure 2b: 
 

 

 

 

Figure SM3b: A Sample Column-Column Pair from the Matrix in Figure 2 

Column c4 – the less populated column with only two presences – shares only shared 

presence with column c1 – the more populated column. Thus, the POij for the c1-c4 pairing 

is PO14 = 50%.   
                                                        
† Figures SM3, SM3a, SM3b, and SM4 are taken directly from: Almeida-Neto, M., Guimaraes, 
P., Guimaraes, P. R., Loyola, R. D. & Ulrich, W. A consistent  metric for nestedness analysis in 
ecological systems: reconciling concept and measurement. Oikos 117, 1227-1239, 
doi:10.1111/j.2008.0030-1299.16644.x (2008). 
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 With the paired overlap, we can now calculate both the decreased fill, DFij,, for every 

row-row and column-column pair. The DFij takes one of two values depending on the 

marginal total, or MT, of the rows or the columns in the pair. Thus, in an ordered adjacency 

matrix, if the marginal total of row i, MTi, is less than the marginal total of row j, MTj, then 

DFij takes on the value of 100. Otherwise, if MTi is greater than or equal to the MTj, then DFij 

takes on the value of 0.  

 

The penultimate variable is the paired nestedness, Nij, for every row-row and every 

column-column pair. Similar to DFij, Nij can take on only one of two values based on the DFij 

and the POij of its row-row or its column-column pair. Thus, if DFij = 100, then Nij = POij; 

otherwise, Nij = 0.   

 

The Nij is calculated for every row-row and column-column pair in the matrix. The NODF 

score is the average of all Nij values:   

 

where  and  are the the total number of possible row-row and column-columns 

pairs in the matrix. Figure SM4 illustrates the entire NODF calculation for the matrix in 

figure 2.  
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Figure SM4: The Entire NODF Calculation for the Matrix in Figure 2 

NULL MODELS 

 

Static Null Model (Bascompte et al.) 

 
 Bacompte et al. (2003) introduced a null model to show whether the nested order of 

the data is statistically meaningful. For this, they introduced a null model (Mcp*) in which 

the probability to find a presence in that same cell of the matrix is equal to the average of 

the probability of finding it in that row and column in the original matrix (Mcp).  
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 Using this model we performed 100 random realizations of the matrix for each year. 

Then we calculated the Temperature and NODF of each realization of the resulting null 

matrices to obtain a distribution of possible outcomes. Figures 1f and 1g show the 95% 

confidence interval Temperature and NODF of these null matrices. Since both the 

Temperature and NODF of the matrices lie outside the confidence interval, we can say that 

the nestedness of the matrix is statistically significant.    

Dynamic Null Model 

 To show that nestedness of the network connecting countries to the products is 

conserved over time we introduce a dynamic null model.  This dynamic null model 

preserves the exact density of the network and also the number of links that appeared and 

disappeared each year in each country and each product. First, we calculate the number of 

links that appeared and disappeared for each year. Then, starting with data for the year 

1985, we introduced the same number of appearances and disappearances that were 

observed in the transition between 1985 and 1986 with a location in the matrix 

determined by the Bascompte et al. null model explained above.  The result is a matrix for 

year 1986 that has the same density of the real data. We continue this procedure to the last 

year of our data. The procedure was repeated 100 times, and for each matrix we calculated 

the Temperature and NODF. Figures 1f and 1g of the main text show the 95% confidence 

interval of the distribution of Temperature and NODF of these dynamic null matrices. The 

figures show that the dynamic null model does not keep the same level of order of the real 

data and disorders rather quickly. Hence, the order of the real-data remains highly nested 

despite large changes in the links of the network. 

DIVERSITY AND UBIQUITY LINES, AND DISTANCE OF EVENTS 
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 To gauge the position of appearances and disappearances in the presence absence 

matrix, we introduce the diversity and ubiquity lines as a line indicating where presences 

would be expected to end if the matrix were to be perfectly nested. 

 In an adjacency matrix sorted by the sum of its rows and columns, the diversity line 

is a line that goes through the column that is equal to the number of presences in that row. 

In the case of locations (countries or municipalities) this is equal to their diversity. For each 

column, the ubiquity line is one that goes through the row equal to its number of presences. 

In the case of an industry, this represents its ubiquity, or the number of locations where it 

is present. Figure SM5 illustrates the diversity and ubiquity lines, and the distance of an 

event to them. 

 

Figure SM5 Diversity and Ubiquity lines and the distance of an event to them. 

ROBUSTNESS CHECKS FOR NESTEDNESS 

 In this section we show the robustness of some of the main stylized facts of the 

paper to a different definition of presences and absences. Here, we indicate presences and 

absences using Balassa's (1986) definition of Revealed Comparative Advantage (RCA). 

Moreover, we use data for all years (1962-2009).  
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 Balassa's (1986) RCA compares the share of a country's exports that a product 

represents with the share of world trade represented by that same product. If that product 

represents a share of that country's export that is larger than its share of world trade, then 

we say that the country has RCA in that product. We define a presence as having RCA≥1 in a 

product for at least five consecutive years. Figure SM6 a shows the increase in the number 

of links in the presence-absence matrix of the RCA network between 1966 and 2009. Figure 

SM6 b shows the RCA country-product network and their respective diversity and ubiquity 

line for the year 2000. This matrix is characterized by a temperature of 12±2 and a NODF of 

21±8. Figure SM6 c shows its respective Bascompte et al. (2003) null model. In this case, 

temperature is 12±2  and NODF is 21±8.  

 

Figure SM6 The nestedness of international economies using RCA. a Evolution of the density of the country-product 

network between 1985 and 2009. b Country-product network for the year 2000. c Bascompte el al. null model for the 

matrix shown in b. d Evolution of the temperature of the country-product network between 1966 and 2009 (green), its 

corresponding Bascompte et al. null model (blue, upper and lower lines indicate 95% conf. intervals). f Same as d but 

using NODF.  

 Figure SM7  reproduces Figure 2 of the paper's main text using Balassa's (1986) 

definition of RCA. These figures illustrate the robustness of the analysis to the difference in 

definition. It is worth noting that using Balassa's (1986) definition of RCA, instead of the 
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exports per capita definition used in the main text, provides slightly weaker, albeit 

statistically significant, predictions. 

 

Figure SM7 Nestedness using RCA. a The country-product network for the year 1993 is shown in grey. Green dots show 

the location of industries that were observed to appear between 1993 and 2000.  d Same as a, but with the industries that 

disappeared in that period shown in Orange. b and e Deviance residuals of the regression presented in (1) of the main 

text applied to the presences-absences shown in a-d. c and f ROC curves summarizing the ability of the deviance residuals 

shown in b-e, to predict the appearances and disappearances highlighted in a and d.  

 Finally, Figure SM8 reproduces figure 3 of the main text using Balassa's (1986) RCA 

to indicate presences and using data for all years. Here, we see that results hold except 

when the years 1974-1977 are used as predictors. This is because of a large discontinuity 

in the data classification introduced between 1973 and 1974. This is documented in the 

second supplementary material of the paper, which shows the fraction of countries that 

had >0 exports in each product category for all years for the 1006 product categories in the 

SITC4 rev2 classification. 
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Figure SM8 Predicting appearances and disappearances using nestedness. a Number of appearances for every pair of 

years in the country-product network. b Number of disappearances for every pair of years for the country-product 

network. c Accuracy of the predictions for each pair of years measured using the Area Under the ROC Curve (AUC). 

References: 

Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R., Loyola, R. D. & Ulrich, W. A consistent  
metric for nestedness analysis in ecological systems: reconciling concept and measurement. 
Oikos 117, 1227-1239, doi:10.1111/j.2008.0030-1299.16644.x (2008). 
Atmar, W. & Patterson, B. D. The Measure of Order and Disorder in the Distribution of  
Species in Fragmented Habitat. Oecologia 96, 373-382, doi:10.1007/bf00317508 (1993). 
B. Balassa, The Review of Economics and Statistics, 68, 315 (1986). 
Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant-animal 
mutualistic networks. Proceedings of the National Academy of Sciences of the United States 
of America 100, 9383-9387, doi:10.1073/pnas.1633576100 (2003). 
Feenstra, R. R. Lipsey, H. Deng, A. Ma and H. Mo. “World Trade Flows: 1962-2000” NBER 
working paper 11040. National Bureau of Economic Research, Cambridge MA (2005). 
Ulrich, W., Almeida, M. & Gotelli, N. J. A consumer's guide to nestedness analysis. Oikos 118, 
3-17, doi:10.1111/j.1600-0706.2008.17053.x (2009). 
 

 


