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Abstract Economic development is a path-dependent process in which countries accu-
mulate capabilities that allow them to move into more complex products and industries. 
Inspired by a theory of capabilities that explains which countries produce which products, 
these diversification dynamics have been studied in great detail in the literature on eco-
nomic complexity analysis. However, so far, these capabilities have remained latent and 
inference is drawn from product spaces that reflect economic outcomes: which products 
are often exported in tandem. Borrowing a metaphor from biology, such analysis remains 
phenotypic in nature. In this paper we develop a methodology that allows economic 
complexity analysis to use capabilities directly. To do so, we interpret the capability re-
quirements of industries as a genetic code that shows how capabilities map onto products. 
We apply this framework to construct a genotypic product space and to infer countries’ 
capability bases. These constructs can be used to determine which capabilities a country 
would still need to acquire if it were to diversify into a given industry. We show that this 
information is not just valuable in predicting future diversification paths and to advance 
our understanding of economic development, but also to design more concrete policy in-
terventions that go beyond targeting products by identifying the underlying capability 
requirements. 

Keywords product space · economic complexity · economic convergence · export 
diversification · industrial policy · poverty trap · structural change 
JEL Classification O11 · O14 

∗ Ulrich Schetter and Dario Diodato contributed equally to this paper. The order among these two 
authors has been drawn at random. 

†Ulrich Schetter: University of Pavia (ulrich.schetter@unipv.it); Dario Diodato: Joint Research Cen-
tre, European Commission (dario.diodato@ec.europa.eu); Eric Protzer: Growth Lab, Harvard University; 
Frank Neffke: Complexity Science Hub Vienna; Ricardo Hausmann: Growth Lab, Harvard University and 
Santa Fe Institute. The authors would like to thank Ostap Stefak for excellent research assistance and Se-
bastian Bustos and Muhammed Yildirim for valuable comments. We are further grateful for the comments 
received at the Global Conference on Economic Geography (Dublin), Geography of Innovation (Milan, 
Manchester), European Regional Science Association (Alicante), the workshop on Economic Complex-
ity, Geography and Innovation (Cambridge, MA), the Economic Fitness and Complexity Spring School 
(Rome), and at seminars at the Harvard Growth Lab (Cambridge, MA) and the IPP-CSIC (Madrid). 

https://dario.diodato@ec.europa.eu
https://ulrich.schetter@unipv.it


1 Introduction 

Economic development is often cast as a process of structural transformation in which 

countries diversify by entering new economic activities. A literature that goes back to 

at least Kim (1980) and Abramovitz (1986) has argued that, to transform the structure 

of their economies, countries need specific “capabilities”. Ever since, scholars have en-

deavored to operationalize the notion of capabilities empirically (Archibugi and Coco, 

2005; Fagerberg and Srholec, 2008). This undertaking has proved fraught with difficul-

ties: it requires an exhaustive list of capabilities, empirical strategies to measure them and 

weights that determine each capability’s importance. Recently, an alternative approach 

has emerged in a field that we will refer to as economic complexity analysis (ECA). 

This field considers capabilities to be pivotal determinants of the industrial structure of 

economies: countries produce the goods and services for which they have all prerequi-

site capabilities. Based on this reasoning, Hidalgo et al. (2007) propose that one can 

assess which products require similar capabilities by observing which products are often 

produced by the same countries. This approach has been successfully applied to predict 

diversification trajectories of countries, regions and cities, not only in terms of their eco-

nomic output, but also in the technological and scientific areas they are able to enter 

(Hidalgo et al., 2018). 

While this notion of similarity has an implied technological root – the degree of similarity 

among products must in some way be related to their capabilities – the measurement of 

the product space abstracts from how products are made and focuses, instead, on what 

is more readily observable: the final output of countries. To borrow a metaphor from 

biology, we argue that this approach is phenotypic in nature: it connects products not by 

similarities in their “DNA”, i.e., the capabilities they require, but by the way this DNA is 

expressed in the mix of products that countries export. 1 In spite of its predictive utility, 

this phenotypic approach makes it hard to ask a number of important questions about 

economic development and development policy, such as: Which capabilities does a country 

have? Which products are feasible with this set of capabilities? Which capabilities does 

the country need to acquire to enter a specific new economic activity? And: are some 

capabilities more easily acquired than others? To overcome these deficiencies, we build on 

previous work by Hausmann and Hidalgo (2011), and Diodato et al. (2022) to propose a 

1Although we borrow this terminology from evolutionary theory developed in biology, we do not take 
a strong position in the debate on generalized Darwinism (e.g., Aldrich et al., 2008). In fact, we will 
develop an empirical methodology that we hope will prove useful to test and develop a broad range of 
theoretical frameworks. 
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tractable approach to constructing a genotypic product space. Doing so, we will not only 

map the capability requirements of products, but also infer the capability endowments of 

countries, only using widely available data. This, in turn, offers a new view on a country’s 

capability base, as well as the opportunities and challenges the country faces on its future 

development path. 

The central idea we leverage is that one can interpret the capability requirements of 

industries as something like a genetic code, a mapping from capabilities to products. 

This allows augmenting previous approaches to the product space in three ways: first, we 

can calculate the distance between two industries by counting the number of capabilities 

that are required in one, but not in the other. Second, by focusing on non-tradeable 

inputs and assuming strong limits to substitution among them, we can infer which such 

inputs are available in a given economy. In particular, under such assumptions, a country 

can only export a product if it possesses all non-tradeable inputs (or, capabilities) that 

the product requires. Third, once input requirements of products and input endowments 

of countries are known, we can directly compute the genotypic proximity between any 

product and any country. This allows determining which capabilities need to be acquired 

to render specific diversification paths feasible. 

We apply this methodology focusing on capabilities embedded in the workforce and show-

case how these capabilities help predict and understand the diversification of countries’ 

export portfolios. We focus on capabilities connected to human capital, because the plau-

sibility of our framework hinges on the assumption that inputs are non-tradeable and 

non-substitutable. These conditions are likely to be approximately fulfilled for human 

capital because, on the one hand, in many jobs, human capital is highly specific (for in-

stance, there is no reasonable rate of substitution between car engineers and accountants) 

and, on the other hand, workers’ mobility is strongly constrained by geographic distance 

and country borders. However, the framework itself allows the use of any type of input 

that can be considered a capability in the aforementioned sense. 

We proceed as follows. First, we construct a matrix that describes the occupational 

requirements for each industry in the economy, using the US Bureau of Labor Statistics’ 

Occupational Employment Statistics. We use the resulting capability requirements matrix 

to construct a genotypic product space and show how this space has certain advantages 

over its phenotypic counterpart. Next, we combine the capability requirements matrix 

with data on countries’ exports to infer the capability endowments of countries. We test 

the validity of our genotypic framework in an analysis of how countries diversify their 
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export baskets. Finally, we discuss implications. 

Doing so reveals numerous conceptual advantages linked to the genotypic approach’s 

clear interpretation of what it means that two products are related. These advantages 

express themselves in more informative descriptions of countries’ capability bases, as well 

as of the developmental bottlenecks they imply. Empirically, we show that our genotypic 

proximity has comparable predictive performance to standard phenotypic approaches, 

while providing a more linear mapping between proximity and diversification probabilities. 

Furthermore, we show how genotypic proximities can be augmented by incorporating 

country-product specific information on the complexity of missing capabilities, which 

further improves predictions. Finally, we show how the genotypic approach can be used 

in policy-making and sketch an agenda for future research in a genotypic approach to 

ECA. 

2 Literature 

Our work is inspired by and complements a vast body of research on structural transfor-

mation and catching up in economic development (Abramovitz, 1986; Hirschman, 1958; 

Lall, 1992; Kim, 1980; Fagerberg et al., 2010). A central question in this literature is why 

productivity differs so widely across economies and a core explanation is that countries 

differ in their technology. Since Abramovitz’ (1956) assertion that the Solow residual is 

nothing but a “measure of our ignorance”, a group of scholars has tried to capture a coun-

try’s state of technology by studying social (Abramovitz, 1986) and technological (Kim, 

1980) capabilities. This set in motion a broad effort in evolutionary economics (Nelson 

and Winter, 1982) to identify and measure these capabilities. However, such an endeavor 

faces several challenges (see, for instance, Fagerberg et al., 2010). First, modern economies 

typically rely on a wide variety of capabilities.2 Second, capabilities are often inherently 

difficult to observe, because they have tacit (Polanyi, 1962) components. Third, even if 

we had a more or less exhaustive list of capabilities and ways to identify them, we would 

still need to determine how to avoid double-counting closely related capabilities and how 

to weigh capabilities according to their importance. 

An alternative approach to understanding economic development is formulated in New 

Structuralist Economics (NSE, Lin, 2011). Building on “old” structuralist economics 

2For instance, Lall (1992) considers three broad classes of capabilities: physical investment capabilities 
(related to, for instance, the financial sector), human capital (related to health, schooling and training) 
and technological capabilities (related to research, innovation and commercialization). 

3 



(e.g., Hirschman, 1958; Prebisch, 1962), NSE focuses on structural transformation. It 

argues that productivity and future development prospects are intimately linked to the 

type of activities that economies engage in (Hausmann et al., 2007), with self-sufficient 

agriculture at the bottom rungs of the developmental ladder and industrial activities 

in machinery and electronics, as well as advanced business services, at the top, akin to 

economic models with a ‘ladder’ of development (Krugman, 1985; Lucas, 1993; Hausmann 

and Rodrik, 2003; Costinot, 2009; Sutton and Trefler, 2016; Schetter, 2020; Atkin et al., 

2021). Countries cannot freely choose their activities. Instead, they specialize according 

to their comparative advantage, which depends on their factor endowments, and so does 

their potential for structural transformation.3 This includes the traditional factors of 

land, capital and labor. Other important factors are influenced by government actions: 

the economy’s so-called hard and soft infrastructure (Lin, 2011), where the former refers 

to physical infrastructure (roads, ports, electricity grids), whereas the latter includes less 

tangible infrastructure, such as institutions, universities, or financial regulation. These 

factor endowments bear a striking resemblance to the capabilities identified in evolutionary 

economics. However, whereas the capability literature mostly focused on the link between 

countries’ composite capabilities and aggregate growth (for instance, as expressed in their 

GDP per capita), NSE pays special attention to how specific factor endowments facilitate 

the development of some sectors but not others.4 

NSE studies structural transformation in broad categories, both in terms of factor endow-

ments and the sectors they support – agriculture, heavy industry, high tech industries, 

etc.. In this paper, we instead build on a closely related field, economic complexity anal-

ysis (ECA). Like NSE, ECA starts from the assumption that different activities require 

different capabilities. However, these capabilities tend to be more fine-grained. Further-

more, ECA assumes strong complementarities among capabilities, with little room for 

substitution between them. As a consequence, economies can only produce the products 

for which they possess all required capabilities. Just like the production factors of NSE, 

capabilities can be physical, like specific pieces of equipment or infrastructure, or intangi-

ble, as in the case of institutions or technological expertise. However, not all capabilities 

matter equally in determining which products can be produced where, and ECA therefore 

3The NSE paradigm is thus related to a voluminous literature on structural change (e.g. Kuznets 
1957; Kongsamut et al. 2001; Foellmi and Zweimüller 2008; Buera et al. 2022) and in particular papers 
analyzing structural change in open economies (e.g. Matsuyama 1992; Uy et al. 2013; Matsuyama 2019), 
where NSE puts a strong emphasis on the ‘capabilities’ that drive structural transformation (see below). 

4Another difference is that evolutionary economists, emphasizing innovation, often concentrate on 
technological as opposed to production capabilities, whereas the new structuralist approach of Lin does 
not give preference to one over the other. 
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focuses on capabilities that meet a number of criteria: they should be non-ubiquitous, 

hard to access from outside the economy (i.e., they should be non-tradable), but relatively 

easy to access by different firms within the economy. 5 

Even with these restrictions, ECA shares the core methodological challenges of the earlier 

capability-based approaches, namely capabilities’ high multiplicity, limited observability 

and unknown weights. Therefore, a crucial methodological innovation of ECA is that 

it bypasses enumerating capabilities and identifying capability requirements of products 

and capability endowments of economies. To do so, ECA developed abstract networks 

based on co-occurences that express similarities in capability requirements in so-called 

product (Hidalgo et al., 2007), industry6 (Neffke et al., 2011), technology (Kogler et al., 

2015) or multilayer spaces (Pugliese et al., 2019), and similarities in capability endow-

ments in country (Bahar et al., 2014) or city spaces. Such spaces are highly predictive of 

diversification patterns—see also Hausmann and Klinger (2006); Boschma and Frenken 

(2006); Frenken and Boschma (2007); Hidalgo et al. (2018).7 We start from a conceptual 

framework that links products to underlying capabilities (Hidalgo and Hausmann, 2009; 

Hausmann and Hidalgo, 2011; O’Clery et al., 2021). We then add to the literature by 

exploiting the underlying capability structure directly to learn about the product space 

and related diversification. Within the wider literature in economic geography, our work 

thus also relates to efforts to understand co-agglomeration patterns of industries (Ellison 

et al., 2010; Diodato et al., 2018; Steijn et al., 2022) or co-exporting patterns of prod-

ucts (Bahar et al., 2019). Such co-agglomeration and co-exporting patterns are nothing 

else than industry or product spaces in the parlance of economic complexity analysis and 

our genotypic approach may therefore also offer new ways to shed light on the drivers 

of agglomeration externalities. Finally, the various implications for policy of our work 

contribute to an expanding set of papers that explores how economic complexity analysis 

can be used as a policy framework (Hidalgo, 2023; Balland et al., 2018; Boschma et al., 

2021; Li and Neffke, 2023). 

5See Neffke et al. (2018) for a more complete exposition as well as similarities to the notion of sustained 
competitive advantage (Barney, 1991) in management science. 

6The idea of an industry space can be traced to the management literature (Teece et al., 1994), where 
scholars were confronted with the same obstacles to identify and measure the resource bases of firms. 

7Furthermore, to get a sense of the extent of an economy’s capability base, it developed metrics of 
economic complexity, i.e., estimates of the completeness of an economy’s capability endowments (Hidalgo 
and Hausmann, 2009; Tacchella et al., 2012). 
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3 Capabilities-based view on production 

At the core of ECA is the idea that modern production relies on many distinct capabilities, 

and that products require overlapping but distinct subsets of these capabilities. These 

capabilities are necessary inputs, i.e., making a given product entails acquiring the entire 

set of capabilities that this product requires. This model of production can be succinctly 

represented in matrix form (Hausmann and Hidalgo, 2011). To that end, let C be a 

Nc × Na dimensional binary capability-endowment matrix, where Nc is the number of 

countries and Na the number of capabilities. An entry of this matrix, Cca, equals one if 

country c has capability a and zero otherwise. Similarly, let P be a Np × Na dimensional 

capability-requirements matrix—where Np is the number of products—whose elements, 

Ppa, indicate whether capability a is required to produce product p. 

Together, the capability-endowments matrix C and the capability-requirements matrix P 

tell us which countries can make which products. In particular, country c can only make 

product p if 
 

a(1 − Cca)Ppa = 0.8 We can collect this information in a binary Nc × Np 

matrix, M , that describes which countries can make which products: 

M cp = 1 

  

a 

(1 − Cca)P pa = 0 

 

(1) 

where 1 [] is the indicator function that evaluates to 1 if the term in brackets is true and 

zero otherwise. If countries make all the products they possibly can—a common (implicit) 

assumption in the related literature—M will correspond to a matrix that represents 

countries’ specialization in international trade.9 

P is binary and elements Ppa simply indicate whether or not the capability a is needed to 

produce the product p. In what follows, we will also consider a variant of the capability-

requirements matrix, ˜ P . This matrix has elements between 0 and 1 that describe how 

intensively product p makes use of capability a. Specifically, we can think of elements 

P̃pa as representing cost shares such that 
 

a P̃pa = 1 for any p. Note that P and ˜ P are 

related: whenever P̃pa > 0, Ppa = 1 and whenever P̃pa = 0, Ppa = 0. 

8The term (1 − Cca) evaluates to one whenever a country c does not have capability a, such that the 
summation only equals zero if a country misses none of the capabilities that product p requires. 

9A large literature in international trade suggests that countries should specialize according to their 
comparative advantage. Nevertheless, standard multi-industry (or -product) gravity models do not pre-
dict zeros at the exporter-industry level, i.e., there is no specialization at the extensive industry margin 
(see, e.g. Costinot et al. 2012). More importantly, this simplification is in line with the fact that even 
relatively small rich countries like Portugal, Czech Republic or Denmark export more than 95% of the 
∼1200 products at the 4-digit HS-level. It is also in line with the observation that exports tend to be 
‘nested’ (Hausmann et al., 2011; Bustos et al., 2012; Tacchella et al., 2012; Schetter, 2020; Gersbach et al., 
2023). 
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3.1 Phenotypic approach 

The previous discussions suggest that much can be learned about the underlying capabil-

ity structure without knowing the underlying matrices C and P and by instead focusing 

on the economic outcomes matrix M . This is the approach taken by the bulk of the liter-

ature on economic complexity analysis. The basic idea is simple: if capabilities represent 

necessary, non-tradeable inputs (broadly defined), then the fact that a country makes a 

product means that the country must have all required capabilities or, equivalently, that 

the product requires only capabilities that are available in the country. Consequently, 

products that require similar capabilities are likely to be exported by the same coun-

tries. This reading implies that co-exporting patterns reveal which products have similar 

capability requirements, an idea that motivated the construction of the product space 

(Hidalgo et al., 2007)—a network representation that connects products if they are often 

co-exported. 

The elements of M describe which countries export which products. In practice, they 

are often determined by calculating a country’s revealed comparative advantage (RCA, 

or Balassa index Balassa (1965)) in a product: 

RCA cp = 

 

x cp/ 
 

p 

x cp 

 

/ 

  

c 

x cp/ 

c 

 

p 

x cp 

 

, (2) 

where xcp represents the value of the exports of country c in product p. The RCA compares 

the share of product p in country c’s exports to p’s share in global exports. Values over 

one indicate that the country is specialized in product p and hereafter we will say that 

country c (significantly) exports product p if RCAcp > 1 and set Mcp = 1 in such case 

and 0 otherwise. 

The product space is constructed based on measures of proximity between pairs of prod-

ucts which Hidalgo et al. (2007) define as: 

Φ pp ′ = 

 
c M cp M cp ′ 

max( 


c M cp, 
 

c M cp ′ ) 
. (3) 

There are many variations in how to calculate this proximity (Li and Neffke, 2023), the 

details of which do not matter for our purposes. The key point is that these measures 

all rely only on matrix M , i.e., on observed outputs, not on information about actual 

capabilities. For this reason, we refer to this class of measures as phenotypic product 

spaces. 
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The product space can be used to predict the evolution of the M matrix, that is, the 

diversification of countries into new products. Intuitively, if building up new capabilities 

is costly, then it should be easier for a country to move into nearby products, that is, 

products that require few new capabilities. Such products should be close to the country’s 

current activities where proximity is defined in terms of the topology of the product space. 

Given that the product space is based on similarities between products, we need to 

translate these pairwise similarities into a similarity between a country—i.e., a basket 

of products—and a potential target product. Typically, this is achieved by assessing how 

active the country is in products closely related to this target product, or, by determining 

the “density” of an economy around each product.10 For instance, Hidalgo et al. (2007) 

calculate the density of country c around product p, ωcp, as: 

ω cp = 

 
p ′ M cp ′ Φ pp ′  

p ′ Φ pp ′ 
. (4) 

Density measures have proved remarkably predictive of diversification processes well be-

yond the export portfolios of countries. Related diversification is so prevalent that it has 

been coined the principle of relatedness (Hidalgo et al., 2018). This empirical success and 

the minimal data requirements explain why keeping the analysis at the phenotypic level 

has had such an appeal, specially given that capability endowments and requirements are 

difficult to observe and could exhibit complex and heterogeneous structures. 

However, the phenotypic approach also has several shortcomings. First, there are sev-

eral ad hoc choices in the design of product spaces and density metrics (Li and Neffke, 

2023). Second, phenotypic proximity measures are symmetric while the underlying ca-

pability structure often implies a directionality. Intuitively, it should be easier to move 

from motorcycles to bicycles than vice-versa. Third, density measures may double-count 

capabilities if products close to the focal product are also closely related to one another. 

Fourth, density measures are not informative about which capabilities a country lacks 

that prevent it from entering the economic activity. In other words, phenotypic measures 

have much to say about which products to diversify into, but much less about how to get 

there. This limits their use in devising concrete development policies. Fifth, and related 

to this, density measures do not help distinguish between capabilities that may differ in 

importance or how hard it is to acquire them. 

10Again, density measures can be constructed in various ways (see Li and Neffke, 2023, for an overview), 
but all rely on product-product similarities to arrive at an estimate of how close a single product is to a 
set of products. 
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3.2 Genotypic approach 

To remedy the shortcomings of the phenotypic approach in ECA, we build on Diodato 

et al. (2022) and develop a genotypic alternative that results in genotypic proximity and 

density measures. In this alternative approach we aim to develop a window directly 

on a country’s capability base. Doing so requires that we can observe the capability 

requirements of products, i.e., matrix ˜ P or P . We will discuss the measurement of these 

matrices in Section 4. Here, we focus instead on the conceptual framework, and to that 

end we simply assume for now that we are equipped with matrix ˜ P and P , respectively. 

3.2.1 Genotypic proximity 

Given matrices ˜ P and P , respectively, we can measure the technological proximity be-

tween two products by directly comparing their capability requirements. In particular, 

consider the following measure of proximity between products p and p ′ , Γpp ′ : 

Γpp ′ = 

 
a(P pa P p ′ a) 

a P pa 
. (5) 

The numerator of eq. (5) counts the number of capabilities that are required in both 

products, p and p ′ , whereas the denominator counts the total number of capabilities 

required in product p. Consequently, Γpp ′ indicates which share of the capabilities that 

are needed to produce p is also used to produce p ′ . That is, Γpp ′ focuses only on the 

extensive capability margin by treating all capabilities symmetrically. Alternatively, we 

can weigh capabilities by how intensively they are used in the production of p, i.e., by 

their cost shares (for instance, when we know that the cost share of a1 in product p is 

twice as large compared to a2): 

Γ̃ pp ′ = 
 

a 

( P̃pa P p ′ a). (6) 

˜ Γpp ′ now indicates the total cost-share in p of capabilities that are also required by product 

p ′ . Note that we can convert these proximity measures into measures of pairwise distance 

as 1 − Γpp ′ and 1 − ˜ Γpp ′ , respectively. 

Unlike the phenotypic product space, the genotypic product space is not inferred but 

directly constructed from information about capability requirements of products. To see 

the merit of these measures, suppose that acquiring a capability entails a fixed cost f 

per capability. Then, 1 − Γpp ′ indicates the cost of starting to produce p when a country 

already produces p′ and, hence, has all the capabilities needed for p′ . Instead, if the cost 
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of acquiring a new capability is proportional to how intensively it is used in the target 

product—e.g. because of an initial learning phase (Diodato et al., 2022)—, this cost is 

captured by 1 − Γpp ′ . Note that these measures are directed, i.e., in general, Γpp ′ ̸= Γp ′ p. 

This direction captures the fact that it is easier to move from a complex product to a 

closely related, but less complex product than vice versa. For instance, if product p1 uses 

capabilities a1 and a2, while product p2 only uses a1 moving from p1 to p2 should be easier 

than moving from p2 to p1. 

3.2.2 Inferring matrix C 

To use the genotypic approach for analyzing diversification patterns, we need to further 

know the capability endowments of countries. Given that not all countries have equally 

good data and that existing data are rarely harmonized across countries, this is a complex 

undertaking. However, as shown in Diodato et al. (2022), we can leverage equation (1) 

to infer the capabilities of countries in matrix C from matrices P and M . This equation 

states that a country can make a product only if it has all required capabilities. This, in 

turn, allows inferring the country’s capability endowments from the products it makes. 

For instance, if producing engines requires mechanical engineering know-how, the fact that 

a country makes engines implies that this know-how is part of the capability endowments 

of that country. More generally, we can infer matrix C from the production matrix M 

and the capability requirements matrix P as follows 

Cca = 1 

  

p 

M cp P pa > 0 

 

, (7) 

where the term 
 

p McpPpa counts how many products produced by country c use capa-

bility a. If this sum is strictly positive, country c must have capability a. 

3.2.3 Genotypic density 

The key advantage of inferring C is that it allows computing the proximity of a country 

to a product in a way that is consistent with the underlying framework outlined at the 

beginning of Section 3: 

µcp = 

 
a CcaP pa 

a P pa 
. (8) 

Eq. (8) measures which share of capabilities that product p requires country c already 

owns. Alternatively, we can derive a density metric that factors in how intensively the 

different capabilities are used in product p, analogously to eq. (6): 

µ̃cp = 
 

a 

Cca P̃ pa. (9) 
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These measures can again be translated into distances by subtracting them from 1. 1−µcp, 

for example, shows which share of capabilities country c would still have to acquire in 

order to start producing p. If the cost of acquiring capabilities scales with the intensity 

of their use—for instance, when the quality or productivity of a capability is smaller in 

an initial learning phase—, then 1 − µ̃cp is more appropriate. This distance reflects how 

intensively a product relies on capabilities that country c still lacks. Either distance metric 

determines the ease with which country c can enter product p (Diodato et al., 2022). 

The genotypic density metrics account for the full proximity relations between all pairs of 

products while the phenotypic density of eq. (4) does not as it sums all pairwise proximities 

of product p to any other product p ′ . Consider, for example, the extreme case where two 

products p ′ and p ′′ have the exact same capability requirements. Then, if a country 

makes product p ′ , the fact that it also makes p ′′ does not add any information about 

its underlying capability endowments. Hence, it does not help determine how close the 

country is to a candidate product p. Nevertheless, standard phenotypic density metrics 

will suggest that the country is closer to product p when it exports both products, p ′ and 

p ′′ , than when it exports only one of them. By contrast, the genotypic density accounts 

for such duplicities.11 

4 Data 

To put the genotypic approach to the test, we study its performance in the canonical 

application of ECA to international trade. To do so, we rely on the U.N. Comtrade’s 

data on exported commodities between 1992 and 2016 (trade data).12 We add to this 

information on occupational profiles of industries from the Occupational Employment 

Statistics for year 2002 compiled by the US Bureau of Labor Statistics (BLS data).13 

We start by creating the matrix M . To do so, we follow Hidalgo et al. (2007) and create a 

binary matrix that describes which products are significantly present in the export basket 

of which countries, based on the RCAs of eq. (2). That is, we assign to each element Mcp 

of matrix M a value of 1 when RCAcp is greater than one and a value of 0 otherwise. 

Next, we need an estimate of matrix P (or of P̃ ). That is, we need a description of which 

11Formally, observe from eq. (7) that for the inferred matrix C it makes no difference if a capability 
is used in only one or several of a country’s products. 

12We use a version of the dataset that has been processed for the Atlas of Economic Complexity 
(https://atlas.cid.harvard.edu/about-data). 

13 Occupational Employment Statistics (OES) (now Occupational Employment and Wage Statistics). 

11 

https://atlas.cid.harvard.edu/about-data


capabilities are used to produce which products. We will assume that, to a first approx-

imation, these capability requirements data are constant over time and across countries. 

That is, we will assume that products are made in the same way across the globe and 

across different time periods. This assumption is rather restrictive. However, similar as-

sumptions are typically made about phenotypical product spaces. Moreover, it is easy to 

allow for heterogeneity in capability requirements. For instance, one could use a different 

matrix for developing countries or allow capability requirements to change over time. To 

keep the exposition simple, we will here focus on the simplest case where P and ˜ P are 

universal, leaving other scenarios for future research. 

Capabilities may come in many different forms, such as specialized skills, technological 

know-how, infrastructure, or institutions. Here, we limit ourselves to a particularly im-

portant class of capabilities: the capabilities that are embedded in human capital, the 

skills and know-how of the workforce needed to work in different occupations. On the one 

hand, access to skilled workers fulfills important aspects of capabilities: human expertise 

is geographically sticky and different types of expertise are often poor substitutes for one 

another. On the other hand, human capital data is often readily available from labor 

market surveys or censuses. 

Specifically, we construct for each industry occupational employment vectors, based on 

information from BLS data. These vectors tell us for each industry in the US, which share 

of its wage bill goes to workers in any given occupation. To merge these data with our 

trade data, we use a concordance developed by Pierce and Schott (2009) that links 6-digit 

HS commodity codes to 4-digit NAICS industry codes.14 Finally, we drop countries with 

fewer than 2 Million inhabitants.15 This yields a dataset with 140 countries, 88 industries 

and 444 occupations. 

Next, we assign a value of 1 to element Ppa of matrix P if occupation a is used by industry 

p. Similarly, for matrix ˜ P , we set element P̃pa equal to the wage-bill share of occupation 

a in product p. 16 We then use these matrices to infer capability endowments of countries, 

as described in eq. (7). 

Matrix M has been the object of study of the phenotypic approach to ECA. First-order 

quantities that can be calculated from this matrix are the ubiquity of products and the 

diversity of country’s export baskets. The first rows of Table 1 provide some information 

14See Diodato et al. (2022) for further details. 
15We use population data from Feenstra et al. (2015). 
16We also considered employment shares, yielding qualitatively the same results as the ones presented 

here. Details are available upon request. 
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Table 1: Descriptive statistics for Mcp, Ppa, and Cca 

Var. N Mean St.Dev Min/Max 

M cp 

Mc 140 20.73 13.03 min: 1 - Angola 
max: 56 - Poland 

M p 88 32.98 14.22 min: 11 - Commercial and Service Industry Machinery 
max: 67 - Other Food 

P pa 

P p 88 126.19 35.73 min: 39 - Leather and Hide Tanning 
max: 204 - Navigational and Electromedical Instruments 

Pa 444 25.01 28.74 min: 1 - Air Traffic Controllers 
max: 88 - Bookkeeping, Accounting, and Auditing Clerks 

Cca 

Cc 140 301.83 54.39 min: 138 - Angola 
max: 397 - Netherlands 

Ca 444 95.17 43.40 min: 12 - Air Traffic Controllers 
max: 140 - Accountants and Auditors 

Notes: Descriptive statistics are reported for the following variables: Mc (country diversity = 
 

p Mcp);
Mp (industry ubiquity = 

 
c Mcp); Pp (industry span = 


a Ppa); Pa (capability generality = 


p Ppa); 

Cc (country completeness = 


a Cca); Ca (capability dispersion = 


c Cca). 

based on these quantities. The most diversified country is Poland, exporting 56 out 

of 88 industries. Angola, on the other hand, is only active in one industry (Oil and Gas 

Extraction). When it comes to industries, the least ubiquitous industry is the Commercial 

and Service Industry Machinery, with only 11 countries that export it, while the most 

ubiquitous industry is Other Food. 

The genotypic approach offers two additional matrices that can be studied, P and C. 

These matrices describe capability requirements of industries and capability endowments 

of countries, respectively. Based on these matrices we can ask, for instance, which indus-

tries have the shortest capability span (Leather and Hide Tanning) and which the longest 

(Navigational and Electromedical Instruments). Similarly, we see a large variation in the 

completeness of countries’ capability endowments, ranging from Angola, with just 138 

occupations to the Netherlands, where industries can access over 400 occupations. 

We can also ask how capabilities are distributed across industries and countries. Capabili-
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ties run from highest generality, such as the skills of Accounting Clerks, who are employed 

in each of the 88 industries, to the highly specific skills of Bookbinders, who work in 

only a single industry. When looking into the dispersion of capabilities across countries 

instead, we see that the general skills of Accountants are found in every country, whereas 

the expertise of Air Traffic Controllers is much more concentrated.17 In Appendix A.1, 

we provide further rankings along each of these dimensions.18 

The genotypic approach also allows us to study how these quantities relate to one another. 

As an example, Fig. 1 shows that the capability span of an industry is strongly and 

negatively correlated with the average generality of capabilities. That is, industries that 

require many capabilities typically also rely on highly specific capabilities. This suggests 

that the development process entails not only the accumulation of more but also of ever 

more specialized capabilities. 

Figure 1: Industry span and average generality of capabilities in the industry 

2111 

2121 

2122 

2123 

3111 3112 

3113 

3114 

3115 

3116 

3117 

3118 3119 

3121 

3122 

3131 

3132 

3133 
3141 

3149 

3151 

3152 

3159 

3161 

3162 
3169 

3211 

3212 

3219 

3221 
3222 

3231 

3241
3251 

3252 

3253 

3254 

3255 

3256 

3259 

3261 

3262 

3271 

3272 

3273 

3274 

3279

3311 

3312 

33133314 

3315 

3321 

3322 

3323 

3324 

3325 

3326 

3327 

3329 

3331 

3332 

3333 

3334 
3335

3336

3339 

3341 
3342 

3343 

3344 

3345 

3346 

3351 

3352 

3353 

3359 

3361 

3362 

3363 

3364 

3365 

3366

3369 

3371

3372 

3379 

3391 

50
 

10
0 

15
0 

20
0 

In
du

st
ry

 s
pa

n 

40 50 60 70 80 
Average generality of capabilities 

Notes: The y-axis depicts the number of occupations required by an industry, the industry’s capability 
span: Pp = 

 
a Ppa. The x-axis shows the industry’s average generality, i.e., the average number of 

industries in which the capability is required. 

Similarly, Figure 2 shows how capability bases vary across countries with different levels 

of development. Panel a shows how the completeness of a country’s capability base corre-

lates with the country’s GDP per capita. Richer countries tend to have more capabilities, 

17Note that services are not included in our sample. Consequently, Air Traffic Controllers are only 
required in the Aerospace Products and Parts industry that is active in only 12 countries. 

18The minimums and maximums in Table 1 are often a tie with other countries, products or occupa-
tions. For instance, both Accounting Clerks and Accountants can be found in all 140 countries. 
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Figure 2: Capabilities in the development process 
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Notes: The x-axis represents GDP per capita (in logs), while the y-axis shows: (a) country completeness 
(the revealed number of occupations in the country); (b) the log of the average generality of capabilities 
in the country; (c) the logs of average dispersion of capabilities in the country. 

consistent with the fact that they also tend to have more diversified export baskets.19 

Furthermore, panel b shows that, on average, richer countries have more specific capa-

bilities and panel c shows that these capabilities are more concentrated in a small set of 

countries. Together, these plots suggest that development entails not only accumulating 

more but also more specialized capabilities that go into fewer products and are present in 

fewer countries. 

5 Diversification dynamics 

5.1 The occupation-based genotypic product space 

Figure 3 visualizes the genotypic product space ˜ Γ as a network. In this network, each 

node represents an industry, labelled with an abbreviated name and colored according to 

the 3-digit Naics sector to which they belong. 

The positioning of nodes deviates from how phenotypic industry spaces are commonly 

displayed, which typically use force-directed algorithms. Instead, Figure 3 arranges nodes 

along the vertical axis to enhance visual clarity by limiting edge crossings, whereas the 

19Given that we infer capabilities from a country’s pattern of specialization and capability requirements 
in the US, these two observations are closely related. Although this approach is not that different from 
the common assumption in ECA of a universal product space that does not differ across countries. To 
assess how well the assumption of a universal capability matrix is we would need comparable data on 
input requirements by product. Such an analysis is however beyond the scope of the current paper. 
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Figure 3: Genotypic product space, ˜ Γpp ′
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horizontal axis sorts industries in ascending order of their capability span. That is, in-

dustries that require the smallest number of capabilities are situated to the left (Leather 

and Hide Tanning, Footwear, and Other Leather Products) and highly complex industries 

that require many capabilities are situated to the right (Navigation and Electromedical 

Instruments, Medical Equipment, and Plastic Products). 
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Links between nodes represent the proximity between industries as measured by ˜ Γpp ′ . 

Unlike the phenotypic product space, edges are directed and we here only show arrows 

that point right towards more complex industries. To avoid cluttering the visualization, 

we only draw edges where ˜ Γpp ′ > .98. Finally, to avoid isolated nodes, where needed, we 

add the closest incoming connection for each industry. 

Interestingly, Fig. 3 suggests that there is a single high-level development path that takes 

countries from the most basic industry, Leather and Hide Tanning, to more complex in-

dustries. This path runs via textiles (red) into chemicals (green) and machinery (teal), to 

end in the most complex industries with greatest occupational span. Digressions from this 

path into mining (light purple), food processing (yellow), or processing of raw materials 

industries (dark purple), lead to the periphery of the product space. Despite abstracting 

from many of the detailed connections that are pruned in these graphs, it is interesting to 

see how the directed nature of pairwise proximities thus highlights well-known and plau-

sible developmental pathways with very different long-run implications for the expected 

standards of living in a country. 

Different development paths on the genotypic product space are also associated with 

different improvements in standards of living. We illustrate this in Fig. 4. The layout 

of the network is the same as in Fig. 3. However, colors now reflect the average level 

of development associated with the industry, measured as the average GDP per capita 

of the countries that are active in the industry. Industries typically found in countries 

with low GDP per capita (yellow-orange) are mainly in the bottom-left part of the space, 

while industries that are more often found in developed countries (red-purple) are mainly 

positioned in the top-right part of the space. 

How different is the genotypic product space from the phenotypic one? To answer this 

question, Table 2 reports the correlation coefficients among the genotypic proximities 

of eqs (5) and (6) on the phenotypic proximity of eq. (3). Both genotypic proximity 

metrics correlate significantly with the phenotypic product space. This suggests that oc-

cupational inputs capture important capability requirements that drive a co-exporting 

patterns. Conversely, it means that conventional phenotypic approaches capture impor-

tant information regarding the underlying capability structure in terms of occupational 

inputs. However, the correlations between phenotypic and genotypic proximities are far 

from perfect, suggesting that both measures provide different types of information that 

can be exploited in applied work. 
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Figure 4: Genotypic product space ˜ Γpp ′ and GDP per capita 

Motor Vehicle Parts 

Pharmaceutical and 
Medicine 

Fruit and Vegetable 
Preserving 

Other Fabricated 
Metal Products 

Basic Chemicals 

Sugar and 
Confectionery 

Motor Vehicle Body 
and Trailer 

Printing and Support 
Activities 

Grain and Oilseed 
Milling 

Ventilation, Heating, 
AirConditioning, and 

Refrigeration 

Pulp, Paper, and 
Paperboard Mills 

Animal Food 

Agriculture, 
Construction, and 
Mining Machinery 

Plastics Products 

Cement and 
Concrete Products 

Electric Lighting 
Equipment 

Other Wood Products 

Metal Ore Mining 

Other Transportation 
Equipment 

Veneer, Plywood, 
and Engineered 

Wood 

Nonmetallic Mineral 
Mining 

Household Appliance 

Sawmills and Wood 
Preservation 

Coal Mining 

Audio and Video 
Equipment 

Motor Vehicle 

Petroleum and Coal 
Products 

Hardware 

Other Leather 
Products 

Oil and Gas 
Extraction 

Engine, Turbine, and 
Power Transmission 

Equipment 

Footwear 

Cutlery and Handtools 

Leather and Hide 
Tanning 

Metalworking 
Machinery 

Apparel Accessories 

Boiler, Tank, and 
Shipping Containers 

Other Furniture 
Related Products 

Foundries 

Apparel Knitting Mills 

Nonferrous Metal 
Productions 

Cut and Sew Apparel 

Alumina and 
Aluminum Products 

Other Textile Product 
Mills Spring and Wire 

Products 

Paint, Coating, and 
Adhesive 

Household Furniture 
and Kitchen Cabinet 

Forging and Stamping 

Textile Furnishings 
Mills 

Office Furniture 

Steel Products from 
Purchased Steel 

Textile and Fabric 
Finishing 

Ship and Boat 
Building 

Architectural and 
Structural Metals 

Soap and Cleaning 
Compound 
Preparation 

Railroad Rolling Stock 

Iron and Steel Mills 
and Ferroalloy 

Fabric Mills 

Magnetic and Optical 
Media 

Other Nonmetallic 
Mineral Products 

Fiber, Yarn, and 
Thread Mills 

Other Electrical 
Equipment 

Glass Products 

Lime and Gypsum 
Products 

Communications 
Equipment 

Clay Products 

Tobacco 

Computer and 
Peripheral Equipment 

Screws, Nuts, and 
Bolts 

Beverage 

Medical Equipment 
and Supplies 

Rubber Products 

Seafood Preparation 
and Packaging 

Electrical Equipment Navigational and 
Electromedical 

Instruments 

Converted Paper 
Products 

Aerospace Products 
and Parts 

Other Chemical 
Products 

Other Food 

Semiconductors and 
Other Electronic 

Components 

Other General 
Purpose Machinery 

Bakeries and Tortilla 

Commercial and 
Service Industry 

Machinery 

Pesticide, Fertilizer, 
Agricultural 
Chemicals 

Animal Slaughtering 
and Processing 

Industrial Machinery 

Resin, Synthetic 
Rubber and Fibers 

Dairy Products 

Notes: Each node represents a 4-digit Naics industry, which is positioned as in Figure 3. However, colors 
now represent the average GDP per capita of countries that are active in the industry: yellow=low GDP 
(first quartile); orange=medium-low GDP (second quartile); red=medium-high GDP (third quartile); 
purple=high GDP (fourth quartile). 

5.2 Genotypic density and export diversification 

To test the predictive power of the genotypic approach, we study how countries diversify 

their exports. To do so, we aggregate our data into 5-year windows: 1992-1996, 1997-

2001, 2002-2006, 2007-2011, 2012-2016. Within each 5-year window t, we calculate RCAt 
cp 

using eq. (2). We then define the entry of country c in product p as: 
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Table 2: Correlation matrix for Φpp ′ , Γpp ′ , and ˜ Γpp ′ 

Φpp ′ Γpp ′ Γ̃ pp ′

Φpp ′ 1 
Γpp ′ 0.40 1 
˜ Γpp ′ 0.39 0.87 1 

Notes: The table reports on the correlation coefficients for Φpp ′ , Γpp ′ , and ˜ Γpp ′ . All correlations are run 
on (882 − 88)/2 = 3828 observations. Since the phenotypic product space is symmetric (Φpp ′ = Φp ′ p), 
we also symmetrize the genotypic spaces, calculating for every pair (p, p ′ ) the mean of the two directed 
genotypic distances in (p, p ′ ) and (p ′ , p). Tables B.1 and B.2 in Appendix B.1 use the maximum or 
minimum genotypic distance in (p, p ′ ) and (p ′ , p) . 

y t cp = 1[(RCAt+1 
cp − RCAt 

cp ≥ 0.5)|RCAt 
cp < 1]. (10) 

Eq. (10) indicates that a country enters a product, if the RCA makes a jump of 0.5 

or higher within a 5-year period. Note that we ignore country-product observations with 

RCAt 
cp ≥1 and thus only consider jumps for countries that do not yet significantly produce 

the product at time t. In Appendix B.2, we test the robustness of our analysis to different 

definitions of yt cp . Next, we calculate for every country-product-time observation both 

phenotypic (ωt 
cp ) and genotypic densities (µt 

cp , µ̃
t 
cp ) as described in Section 3. 

Figure 5 shows how the probability of entry changes with density. To do so, we first cal-

culate percentile ranks for our density measures. Next, we create a sliding window across 

these percentiles that is centered on ωt 
cp , respectively µ̃t 

cp and spans from 20 percentiles 

below to 20 percentiles above these values. Finally, we calculate in each window the av-

erage of yt cp , the relative frequency at which we observe a country entering a product for 

the associated density window. 

For both measures, the probability of entry runs from 1-2% at low densities to 5-7% at 

high densities. In this sense, the two measures perform about equally well when it comes 

to predicting entry events. However, whereas the entry probability rises monotonically 

with increasing values of genotypic density, it plateaus about mid-way for the phenotypic 

density. This suggests that the genotypic density ranks products more consistently across 

its distribution when it comes to the likelihood of countries’ diversifying into them. One 

possible explanation for this is that the genotypic density successfully filters out redundant 

information from closely related products, whereas the phenotypic density does not. 

Table 3 corroborates that phenotypic and genotypic approaches have similar global pre-
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Figure 5: Probability of entry and density 
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value. The plot for phenotypic density (ωt 
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dictive validity. It shows results from the following regression: 

y t cp = β1 log ω t cp + β2 log µ̃t 
cp + δt 

cp + ϵt cp, (11) 

where δt 
cp is a column-specific vector of fixed effects as indicated in the last row of Table 3, 

ranging from simple product (p), country (c) and period (t) fixed effects to composite 

product-period and country-period fixed effects. The first rows of the table show univari-

ate regressions, including only one of the two density measures. The bottom rows show 

results when both density types enter the regression simultaneously. 

Regardless of the included fixed effects, the univariate regressions indicate that phenotypic 

and genotypic density have similar predictive performance. Furthermore, the multivariate 

regressions show that the two metrics remain significant also when they are included 

jointly in the regression. This means that phenotypic and genotypic regressions do not 

capture exactly the same variation.20 

20To check the robustness of these results, we run a number of regressions (see Appendix B.1), with 
variations in the definition of the appearance variable yt cp. Furthermore, Abadie et al. (2023) highlights 
that—in the absence of a sampling problem—the clustered standard errors could overestimate the true 
variance. We, thus, report robust standard errors in the main text and cluster-robust ones in the appendix. 
Especially in the case of the effect of genotypic density, we only find minor differences compared to robust 
standard errors. 
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Table 3: Probability of entry and density 

(1) (2) (3) (4) (5) (6) 

log ωt 
cp 0.016*** 0.076*** 0.014*** 0.007** 0.008*** 0.052*** 

(0.001) (0.003) (0.001) (0.003) (0.003) (0.004) 
Adj. R2 0.01 0.06 0.02 0.05 0.06 0.08 
N 37563 37563 37563 37563 37563 37563 

log µ̃t
cp 0.101*** 0.052*** 0.124*** 0.040*** 0.040*** 0.061*** 

(0.006) (0.008) (0.007) (0.011) (0.011) (0.012) 
Adj. R2 0.00 0.05 0.02 0.05 0.06 0.07 
N 37570 37570 37570 37570 37570 37570 

log ωt 
cp 0.014*** 0.076*** 0.009*** 0.005* 0.006** 0.050*** 

(0.001) (0.003) (0.001) (0.003) (0.003) (0.004) 
log µ̃t

cp 0.042*** 0.056*** 0.065*** 0.035*** 0.034*** 0.042*** 
(0.008) (0.008) (0.011) (0.012) (0.012) (0.012) 

Adj. R2 0.01 0.07 0.02 0.05 0.06 0.08 
N 37563 37563 37563 37563 37563 37563 

Controls ct pt c,p c,p,t ct,pt 

Notes: The table reports three sets of regressions following Equation 11: the first, including only pheno-
typic density (log ωt 

cp ); the second, only genotypic proximity (log µ̃t 
cp ); the third, both. The dependent 

variable follows the definition in Equation 10. Robust standard errors in parentheses. Significance is 
indicated by *(10%), **(5%), and ***(1%). 

5.3 Beyond density 

A key advantage of the genotypic approach is that it not only allows assessing which 

industries are close to a country’s current export basket, but also which capabilities the 

country would need to acquire to enter this industry. To illustrate the empirical value of 

this additional information, we add three explanatory variables to our appearance regres-

sion. First, we add req t cp , the average years of education for the occupations that country 

c is missing to start making product p, using educational requirements by occupations 

as provided by the U.S. Bureau of Labor Statistics. Second, we add edut 
c, the country’s 

average years of education from Barro and Lee (2013). Third, we add the interaction of 

req t cp and edut 
c. This yields the following regression model: 

y t cp = β1 log µ̃t 
cp + β2 log req t cp + β3 log edu t c + β4 log req t cp × log edu t c + δt 

cp + ϵt cp. (12) 
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Table 4: Capability-enhanced appearance regressions 

(1) (2) (3) (4) (5) (6) 

log µ̃t
cp 0.106*** 0.049*** 0.136*** 0.033*** 0.034*** 0.056*** 

(0.007) (0.009) (0.009) (0.012) (0.012) (0.013) 
log req t cp -0.587*** -0.634*** -0.223** -0.305*** -0.304*** -0.235** 

(0.084) (0.086) (0.100) (0.102) (0.102) (0.102) 
log edut

c -0.680*** 0.000 -0.352*** -0.436*** -0.362*** 
(0.098) (0.000) (0.113) (0.116) (0.117) 

log req t cp × log edut 
c 0.248*** 0.261*** 0.122*** 0.151*** 0.151*** 0.122*** 

(0.037) (0.038) (0.043) (0.044) (0.044) (0.044) 

Adj. R2 0.01 0.05 0.03 0.06 0.06 0.07 
N 31923 31923 31923 31923 31923 31923 
Controls ct pt c,p c,p,t ct,pt 

Notes: The table reports the regression described in Equation 12: the regressors are genotypic proximity 
(log µ̃t

cp ), the (weighted) average years of education required in missing occupations (log reqtcp), the 
country’s average years of education (log edut 

c), and the interaction of the latter two terms. The dependent 
variable follows the definition in Equation 10. Robust standard errors in parentheses. Significance is 
indicated by *(10%), **(5%), and ***(1%). 

Table 4 reports results. We focus here on the interaction between educational require-

ments for the potential diversification event and the educational endowments of the coun-

try. Different columns correspond to models with different types of fixed effects. Across 

specifications, the interaction effect is positive and highly significant, suggesting a ro-

bust complementarity between the nature of the missing capabilities and a country’s 

endowments.21 This finding strongly resonates with Schetter (2022) who shows how such 

complementarities provide a flexible microfoundation for the Economic Complexity Index 

(Hidalgo and Hausmann, 2009) that is in line with key concepts in the related literature. 

6 Discussion 

The genotypic approach opens up a number of new avenues in economic complexity anal-

ysis. Economic development in ECA, but also in the capability approach in evolutionary 

economics, is often regarded as a process of accumulating capabilities that allow a country 

to enter into more complex industries. By revealing the capability bases of countries, the 

genotypic approach allows us to study a country’s capability trajectory directly. 

21Robustness checks are reported in Appendix B.1. Including a control for phenotypic density or 
changing the measure of education we use does not change results. 
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To provide a concrete example, consider the economic development process of Vietnam 

between 1992 and 2016. At the start of this period, Vietnam was active in 14 of industries, 

such as Footwear Manufacturing, Apparel Manufacturing, and Furniture Manufacturing. 

Over the next three decades, Vietnam entered a dozen new industries, including Commu-

nications Equipment Manufacturing, Audio and Video Equipment Manufacturing, Com-

puter and Peripheral Equipment Manufacturing and Semiconductor and Other Electronic 

Component Manufacturing. According to our analysis, this expansion required acquiring 

about 40 new capabilities, including the expertise of Computer Hardware Engineers, Ma-

terials Scientists, Electronics Engineers, Electromechanical Equipment Assemblers, and 

Data Communications Analysts. 

However, the potential of the genotypic approach goes well beyond such descriptive anal-

ysis. Below, we sketch how the genotypic approach can be used in policy making and to 

develop a new research agenda within ECA. 

6.1 Implications for policy 

ECA has contributed to policy frameworks for country-level and regional economic de-

velopment. It has been applied by policy makers in multilateral organizations such as 

the World Bank (Bank, 2019) and the European Union, where it offers analytic insights 

for smart specialization (Boschma et al., 2021; Diodato et al., 2023b), one of the world’s 

largest place-based policy actions. Our genotypic analysis can augment such policy frame-

works in several ways. 

The genotypic approach goes beyond measures of proximity or density and complexity 

rankings, offering insights into actual capability requirements and capability endowments. 

In practical terms, such insights can be leveraged to determine the feasibility of diversifica-

tion paths in new ways that directly ask which capabilities are missing and which actors or 

economies may be the best sources to acquire them from. This information moves policy 

prescriptions from targeting specific products to investing in specific capabilities. This, 

in turn, limits the risks of capture by vested interests of actors that operate in specific 

product markets and instead turns the focus to targeted provision of public goods. In this 

sense, the genotypic approach may also support Lin’s (2011) NSE framework by helping 

identify which hard and soft infrastructure a country should aim to develop. 

Furthermore, although the genotypic approach does not have a clear edge in predicting 

diversification paths over phenotypic approaches, the linear mapping between genotypic 

density and entry probabilities of Fig. 5 suggests that it does more accurately map the 
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relative risk ratios of diversification over a broader range of densities. This is useful 

because it can help a country better assess trade-offs between feasibility and desirability 

of entering a new product at different points along the density spectrum. 

The genotypic approach also has implications for long-term economic development. So 

far, we have focused on the ability of the product space to predict diversification patterns 

in the short- to medium-run. However, the directed nature of the genotypic product 

space reveals how different choices can lead to different long-run developmental options, 

as well as suggest good ways to sequence the acquisition of capabilities along such paths. 

Moreover, it draws attention to a number of potential poverty traps (Hidalgo et al., 2007; 

Hausmann and Hidalgo, 2011; Tacchella et al., 2016; Diodato et al., 2022). Explicitly 

accounting for the capabilities allows the genotypic approach to provide additional insights 

that cannot be derived at the phenotypic level. 

For instance, the genotypic approach allows to test the empirical relevance of the so-called 

quiescence trap (Hausmann and Hidalgo, 2011; Tacchella et al., 2016). The quiescence 

trap refers to the hypothesis that the combinatorial dynamics that ECA assumes for 

economic production may lock a country into periods of developmental stasis (Hausmann 

and Hidalgo, 2011). This follows directly from the production framework assumed in 

ECA, according to which countries only produce the products for which they have all 

required capabilities. As countries acquire new capabilities, they can combine them with 

their existing capabilities. This leads to new capability combinations, some of which are 

associated with viable products. However, the value of a new capability depends on the 

number of capabilities a country already has: one extra capability leads to many more 

new combinations in highly developed economies that already dispose of many capabilities 

than in less developed countries with only few existing capabilities. 

The genotypic approach allows taking these ideas to the data. To do so, Fig. 6 plots for 

each country its number of capabilities on the horizontal and its number of industries on 

the vertical axis. The relationship between the number of capabilities a country has and 

the number of industries in which it is active exhibits the hypothesized convexity needed 

for quiescence traps. In particular, the graph shows that at low levels of diversification, 

i.e., among countries with ∼ 270 capabilities or less, industrial diversification grows only 

little with the number of capabilities. For instance Angola has 138 capabilities and 1 

industry, while Qatar has 214 capabilities and 5 industries. As we move to countries with 

more capabilities, the number of industries rises rapidly: Albania has 298 capabilities but 

already 21 industries, while Germany has 387 capabilities and 47 industries. This suggests 
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Figure 6: Quiescence trap 

AFG 

AGO 

ALB 

ARE

ARG 
ARM 

AUS 

AUT 

AZE

BEL 

BEN 

BFA 

BGD 

BGR 

BIH 

BLR 

BOL 

BRA 

CAF 

CAN 

CHE 

CHL 

CHN 

CIV 

CMR 

COD 

COG 

COL 

CRI 

CUB 

CZE 

DEU 

DNK 

DOM 

DZA

ECU 

EGY

ESP 

ETH 

FIN 

FRA 

GBR 

GEO 
GHA 

GIN 

GMB

GRC 

GTM 

HKG 

HND 

HRV 

HTI 

HUN 
IDN 

IND 

IRL 

IRN 

IRQ 

ISR 

ITA 

JAM 

JOR 

JPN 

KAZ 

KEN 

KGZ 

KHM

KOR 

KWT 

LAO 

LBN 

LBRLBY 

LKA 

LTU 

MAR

MDA 

MDG 

MEX 

MKD 

MLI 

MMR 

MNG 

MOZ

MRT 

MWI 

MYS 

NER 

NGA 

NIC 

NLD 

NOR 

NPL 

NZL 

OMN 

PAK 

PAN 

PER 

PHLPNG 

POL 

PRK 

PRT 

PRY 

QAT 

ROU 

RUS 

RWA 

SAU 

SCG 

SDN 

SEN 

SGP
SLE 

SLV 

SOM 

SVK 

SVN 

SWE 

SYR 

TCD 

TGO 

THA

TJK

TKM 

TUN 

TUR 

TWN 

TZA 

UGA 

UKR 

URY

USA 

UZB 
VEN 

VNM

YEM 

ZAF 

ZMB 

ZWE 

0 
20

 
40

 
60

 
N

um
be

r o
f i

nd
us

tri
es

 

150 200 250 300 350 400 
Number of occupations 
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Cc) per country. The graph refers to the year 2002 and uses an RCA threshold of 1. The trend line is a 
LOWESS smooth. 

that the number of industries that a country can develop only rises rapidly at later stages 

of development. 

The genotypic approach can also deepen our understanding of other poverty traps. For 

instance, Hidalgo et al. (2007) already showed that countries specialized in products at the 

periphery of the product space tend to have relatively few diversification opportunities, 

suggesting the existence of a periphery trap. In Appendix C.1, we discuss how the geno-

typic product space can be used to simulate diversification opportunities and show that 

the capability requirements of Apparel accessories are more conducive of development 

than those of Metal ore mining, for example. 

Finally, a related, but distinct, poverty trap is discussed in Appendix C.2. Here, we 

argue that diversification might “congest” capabilities: entering new industries increases 

the opportunity cost for hiring labor for further diversification moves. Consequently, 

diversifying into new industries has two opposing effects: (i) it allows the country to 

accumulate new capabilities, thus making it easier to further diversify; (ii) it raises the 

cost of existing capabilities, making it more difficult to further diversify. Depending on 

the balance of these two effects, the order of entry into new industries matters. Although 

this entry trap may, in principle, also be studied at the phenotypic level, the genotypic 

approach’s attention to opportunity costs of the non-tradeable inputs of production offers 

a more natural framework to do so (see also Diodato et al., 2022). 

25 



6.2 A new research agenda 

The analysis so far has provided a sketch of what a genotypic approach to economic 

complexity may look like and how it can be used in development research and policy. To 

do so, we studied the framework in a highly stylized setting and there are many ways in 

which this approach can be refined and extended. Moreover, going down to the level of 

capabilities opens up a range of new questions and opportunities for further analysis. 

First, our focus on human capital inputs strongly has limited the set of capabilities we 

have considered. The advantage of doing so is that it kept the exposition compact. More-

over, human capital related capabilities are likely to fulfill important characteristics that 

are assumed about capabilities in the stylized model of production we use: human capital 

is valuable, relatively specific, mostly non-ubiquitous and hard to move or access from 

outside the country where it resides. Moreover, many other types of capabilities have 

components that are embedded in the skills of workers. For instance, physical equipment 

and technological expertise require workers that know how to use this equipment and 

apply the expertise. However, future research could focus on various other types of capa-

bilities that can be mapped using the methodology described in this paper. For example, 

nontraded intermediates, such as specialized business services, may fit our definition of 

capabilities as well. Information on which industries rely on which business services is 

readily available in the supply and use tables used in input-output analysis, suggesting 

that such information can be added relatively easily to the P and ˜ P matrices. Another 

example is the technological areas in which industries conduct R&D as revealed in patent 

data. 

Second, even if we limit ourselves to human-capital related capabilities, our analysis can 

be augmented. After all, occupations are themselves bundles of tasks and some pairs of 

occupations are more similar to one another than others (Gathmann and Schönberg, 2010; 

Neffke et al., 2024). Therefore, although we have avoided double-counting occupations, we 

may still double-count capabilities in terms of the underlying skills, knowledge and abilities 

of workers in these occupations. Datasets that describe the content of occupations such as 

O*NET in the US may help remedy such problems, expressing capability requirements of 

industries in terms of the skills they rely on through the human capital of their workers. 

This type of analysis may also help connect the genotypic approach in ECA to the task-

based approach in labor economics (Acemoglu and Autor, 2011), as well as to research 

about the future of work (e.g., Alabdulkareem et al., 2018). 

Third, an interesting set of questions arises from relaxing the assumption of a universal 
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capability requirements matrix. To a first approximation, this may be justified: although 

car firms may differ in their exact technologies and human capital, it is plausible that 

capability requirements of car industries in different countries are more similar to one 

another than they are to the capability mix required by mining companies. Nevertheless, 

the mix of occupations that a given industry employs may differ between industrialized and 

less developed economies. In this case, the P matrix differ across (groups of) countries. 

Similarly, capability requirements may change. Such variations of the P matrix can be 

easily accommodated. For instance, we may use different versions of P for advanced 

and developing economies. Furthermore, future research could explore how to extend our 

framework to allow for countries to choose between different production technologies. 

Fourth, we have tested the genotypic analysis in ECA’s original context of international 

trade. However, economic complexity has had a large influence on the field of economic 

geography and in particular of evolutionary economic geography. Therefore, studying the 

industrial diversification dynamics of cities and regions could offer a particularly promising 

alternative application. 

Fifth, although the acquisition of new capabilities has played a prominent role in our 

paper, we have remained silent on how countries develop new capabilities. An expanding 

literature has argued that capabilities often diffuse from places where they are already well 

established. This literature has identified several channels for such capability diffusion, 

from migration (e.g., Bahar and Rapoport, 2018; Diodato et al., 2023a), to FDI (e.g., 

Crescenzi et al., 2022) and business travel (Coscia et al., 2020). By revealing changes in 

the capability mix of countries, the genotypic approach offers new, more direct, ways of 

analyzing these channels and their importance. 

Sixth, our work does not focus on maximizing predictive validity, as in Tacchella et al. 

(2023). However, the genotypic predictions can be improved by fine-tuning e.g. when to 

treat a capability as present in a country or how different capabilities are weighted. For 

instance, one can use information on the value or difficulty of acquiring a capability. It 

may also be possible to calibrate these weights such that they maximize the predictive 

validity of genotypic density metrics in diversification dynamics. Such an analysis would 

provide valuable information on how important different capabilities are. 

Seventh, although we have not fully pursued this, the genotypic approach also directly 

suggests genotypic complexity metrics. This could be as simple as counting the capabilities 

of a country. Comparing the predictive validity of such genotypic complexity measures to 

their phenotypic counterparts in predictions of GDP per capita growth may shed further 

27 



light on the relative merits of each approach. Incidentally, this exercise may also offer a 

different way to tune the aforementioned capability weights. 

Finally, a number of ECA-inspired combinatorial models of economic growth have been 

proposed (Hausmann and Hidalgo, 2011; Fink et al., 2017; van Dam and Frenken, 2020). 

By making capabilities measurable, the genotypic approach offers ways to test these mod-

els more directly. 

In sum, although the genotypic approach to ECA we have sketched has shown promising 

results, much work remains. To facilitate this work, we make the underlying Python code 

as well as the estimated capability bases of countries and their changes over time available 

for download. 

7 Conclusions 

Economic complexity analysis has advanced our knowledge of diversification and struc-

tural transformation processes. The strength of this literature is that it showed how 

detailed, highly disaggregated information on an economy’s industrial structure can be 

analyzed to map stylized development trajectories that are predictive of future diver-

sification, without resorting to a small set of factors of production or coarse stages of 

development. So far, this literature has used the notion of capabilities primarily as a 

narrative that underlies methods to derive product similarities and complexity rankings. 

Here, we propose that by taking the capabilities narrative more literally, we can arrive 

at more informative descriptions of countries’ capability bases. This offers new ways 

to analyze the costs countries face when trying to enter new products and how they can 

achieve this. We have termed this approach genotypic, using capabilities as akin to encod-

ing a DNA of products and countries, where different combinations of capabilities result 

in different products. This stands in contrast to more traditional economic complexity 

analyses, which we have termed phenotypic, because they group and rank products and 

countries based on observed outcomes alone, without direct reference to the underlying 

capability structure. 

Although our genotypic approach uses an arguably crude approximation of how economies 

produce products, it emphasizes important constraints and opportunities in economic de-

velopment that have first-order consequences for how economies move along their develop-

ment trajectories. Moreover, the proposed genotypic approach complements conventional 

product space analyses and helps deepen our understanding of underlying mechanisms in 
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various ways. First and foremost, directly building on the underlying capability structure 

opens up the black box of what drives co-location and related diversification. Second, the 

focus on capabilities allows deriving proximity and density metrics that are, in principle, 

consistent with the underlying drivers of technological similarity. This is not, in gen-

eral, the case for phenotypic analyses—see Appendix D.1. Third, the genotypic approach 

suggests that the proximity between products is directed : diversifying from textiles to air-

planes is not the same as from airplanes to textiles. We have shown that this asymmetry 

has important short-run and long-run consequences for economic development. Lastly, 

building on the capability structure opens up new avenues that are impossible to explore 

at the phenotypic level: Co-location patterns can indicate which products are likely to be 

in a country’s adjacent possible, but they cannot tell us what it would take for a country 

to actually start making these products. The genotypic approach allows filling this gap, 

opening up new avenues for research and approaches to policy making. 
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Appendices 

A Supplementary descriptives 

A.1 Rankings of countries, products, and occupations 

Table A.1: Countries with fewer industries 

# Ind. ISO3 Country name 
1 AGO Angola 
1 IRQ Iraq 
2 KWT Kuwait 
3 DZA Algeria 
3 LBR Liberia 
3 LBY Libya 
3 SAU Saudi Arabia 
4 MLI Mali 
4 MRT Mauritania 
4 OMN Oman 
4 TKM Turkmenistan 
5 COG Congo 
5 IRN Iran 
5 QAT Qatar 
5 YEM Yemen 

Notes: The table displays the bottom ranking of Mc (country diversity = 
 

p Mcp). 
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Table A.2: Countries with most industries 

# Ind. ISO3 Country name 
56 POL Poland 
51 ITA Italy 
50 ESP Spain 
48 AUT Austria 
47 DEU Germany 
46 SVN Slovenia 
45 CZE Czechia 
45 SCG Serbia and Montenegro 
44 BGR Bulgaria 
44 DNK Denmark 
44 FRA France 
43 HRV Croatia 
42 SVK Slovakia 
41 BEL Belgium-Luxembourg 
40 BLR Belarus 

Notes: The table displays the top ranking of Mc (country diversity = 
 

p Mcp). 

Table A.3: Industries in fewer countries 

# Countries Naics Industry name 
11 3333 Commercial and Service Industry Machinery 
11 3327 Screws, Nuts, and Bolts 
12 3364 Aerospace Products and Parts 
13 3339 Other General Purpose Machinery 
13 3344 Semiconductors and Other Electronic Components 
15 3336 Engine, Turbine, and Power Transmission Equipment 
15 3332 Industrial Machinery 
15 3345 Navigational and Electromedical Instruments 
16 3343 Audio and Video Equipment 
16 3342 Communications Equipment 
16 3351 Electric Lighting Equipment 
16 3369 Other Transportation Equipment 
16 3346 Magnetic and Optical Media 
17 3341 Computer and Peripheral Equipment 
17 3325 Hardware 

Notes: The table displays the bottom ranking of Mp (industry ubiquity = 
 

c Mcp). 
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Table A.4: Industries in most countries 

# Countries Naics Industry name 
67 3119 Other Food 
64 3113 Sugar and Confectionery 
58 3116 Animal Slaughtering and Processing 
58 3273 Cement and Concrete Products 
58 3161 Leather and Hide Tanning 
57 3114 Fruit and Vegetable Preserving 
56 3112 Grain and Oilseed Milling 
56 2123 Nonmetallic Mineral Mining 
55 3149 Other Textile Product Mills 
55 3241 Petroleum and Coal Products 
54 3152 Cut and Sew Apparel 
54 3253 Pesticide, Fertilizer, Agricultural Chemicals 
53 3211 Sawmills and Wood Preservation 
52 3219 Other Wood Products 
49 3122 Tobacco 

Notes: The table displays the top ranking of Mp (industry ubiquity = 
 

c Mcp). 

Table A.5: Industries requiring fewest occupations 

# Occ. Naics Industry name 
39 3161 Leather and Hide Tanning 
48 3162 Footwear 
51 3169 Other Leather Products 
59 3361 Motor Vehicle 
62 3159 Apparel Accessories 
62 3365 Railroad Rolling Stock 
63 3122 Tobacco 
68 3274 Lime and Gypsum Products 
68 3117 Seafood Preparation and Packaging 
72 3151 Apparel Knitting Mills 
74 3131 Fiber, Yarn, and Thread Mills 
76 2122 Metal Ore Mining 
89 2121 Coal Mining 
92 3325 Hardware 
92 3379 Other Furniture Related Products 

Notes: The table displays the bottom ranking of Pp (industry span = 
 

a Ppa). 
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Table A.6: Industries requiring most occupations 

# Occ. Naics Industry name 
204 3345 Navigational and Electromedical Instruments 
199 3391 Medical Equipment and Supplies 
196 3261 Plastics Products 
191 3329 Other Fabricated Metal Products 
186 3363 Motor Vehicle Parts 
180 3339 Other General Purpose Machinery 
176 3254 Pharmaceutical and Medicine 
175 3344 Semiconductors and Other Electronic Components 
172 3364 Aerospace Products and Parts 
171 3323 Architectural and Structural Metals 
167 3231 Printing and Support Activities 
162 3219 Other Wood Products 
161 3331 Agriculture, Construction, and Mining Machinery 
159 3251 Basic Chemicals 
157 3333 Commercial and Service Industry Machinery 

Notes: The table displays the top ranking of Pp (industry span = 
 

a Ppa). 

Table A.7: Occupations required by fewest industries 

# Ind. Soc Occupation name 
1 53-2021 Air Traffic Controllers 
1 53-2022 Airfield Operations Specialists 
1 19-2021 Atmospheric and Space Scientists 
1 29-1121 Audiologists 
1 51-5012 Bookbinders 
1 27-4012 Broadcast Technicians 
1 27-4031 Camera Operators, Television, Video, and Motion Picture 
1 49-9061 Camera and Photographic Equipment Repairers 
1 35-1011 Chefs and Head Cooks 
1 39-9011 Child Care Workers 
1 35-2014 Cooks, Restaurant 
1 31-9091 Dental Assistants 
1 29-2021 Dental Hygienists 
1 51-9081 Dental Laboratory Technicians 
1 47-5011 Derrick Operators, Oil and Gas 

Notes: The table displays the bottom ranking of Pa (capability generality = 
 

p Ppa). 
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Table A.8: Occupations required by most industries 

# Ind. Soc Occupation name 
88 43-3031 Bookkeeping, Accounting, and Auditing Clerks 
88 51-1011 First-Line Supervisors/Managers of Production and Operating Workers 
88 43-9061 Office Clerks, General 
88 43-5071 Shipping, Receiving, and Traffic Clerks 
87 13-2011 Accountants and Auditors 
87 43-6011 Executive Secretaries and Administrative Assistants 
87 11-3031 Financial Managers 
87 43-1011 First-Line Supervisors/Managers of Office and Administrative Support Workers 
87 11-1021 General and Operations Managers 
87 51-9198 Helpers–Production Workers 
87 51-9061 Inspectors, Testers, Sorters, Samplers, and Weighers 
87 37-2011 Janitors and Cleaners, Except Maids and Housekeeping Cleaners 
87 43-5061 Production, Planning, and Expediting Clerks 
87 41-4012 Sales Representatives, Wholesale and Manufacturing, Except Technical Products 
87 43-6014 Secretaries, Except Legal, Medical, and Executive 

Notes: The table displays the top ranking of Pa (capability generality = 
 

p Ppa). 

Table A.9: Countries endowed with fewest occupations 

# Occ. ISO3 Country name 
138 AGO Angola 
138 IRQ Iraq 
181 BGD Bangladesh 
182 MRT Mauritania 
185 LBR Liberia 
186 KWT Kuwait 
193 DZA Algeria 
193 LBY Libya 
198 MLI Mali 
213 OMN Oman 
213 SAU Saudi Arabia 
213 TKM Turkmenistan 
214 QAT Qatar 
226 KHM Cambodia 
233 COG Congo 

Notes: The table displays the bottom ranking of Cc (country completeness = 
 

a Cca). 
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Table A.10: Countries endowed with most occupations 

# Occ. ISO3 Country name 
397 NLD Netherlands 
396 DNK Denmark 
391 ESP Spain 
387 BEL Belgium-Luxembourg 
387 DEU Germany 
382 HRV Croatia 
381 AUT Austria 
380 USA USA 
379 FRA France 
377 CAN Canada 
376 AFG Afghanistan 
374 ITA Italy 
374 SWE Sweden 
372 POL Poland 
370 SVN Slovenia 

Notes: The table displays the top ranking of Cc (country completeness = 
 

a Cca). 

Table A.11: Occupations present in fewest countries 

# Countries Soc Country name 
12 53-2021 Air Traffic Controllers 
12 53-2022 Airfield Operations Specialists 
12 27-4012 Broadcast Technicians 
12 41-3041 Travel Agents 
13 47-4021 Elevator Installers and Repairers 
15 19-2021 Atmospheric and Space Scientists 
15 29-1121 Audiologists 
15 49-9061 Camera and Photographic Equipment Repairers 
15 15-2091 Mathematical Technicians 
15 19-2012 Physicists 
15 53-6051 Transportation Inspectors 
15 49-9064 Watch Repairers 
16 49-2097 Electronic Home Entertainment Equipment Installers and Repairers 
16 49-3052 Motorcycle Mechanics 
16 27-2012 Producers and Directors 

Notes: The table displays the bottom ranking of Ca (capability dispersion = 
 

c Cca). 
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Table A.12: Occupations present in most countries 

# Countries Soc Country name 
140 13-2011 Accountants and Auditors 
140 11-3011 Administrative Services Managers 
140 49-3023 Automotive Service Technicians and Mechanics 
140 43-3021 Billing and Posting Clerks and Machine Operators 
140 43-3031 Bookkeeping, Accounting, and Auditing Clerks 
140 49-3031 Bus and Truck Mechanics and Diesel Engine Specialists 
140 17-2041 Chemical Engineers 
140 19-2031 Chemists 
140 11-1011 Chief Executives 
140 53-7061 Cleaners of Vehicles and Equipment 
140 13-1072 Compensation, Benefits, and Job Analysis Specialists 
140 43-9011 Computer Operators 
140 15-1021 Computer Programmers 
140 15-1041 Computer Support Specialists 
140 15-1051 Computer Systems Analysts 

Notes: The table displays the top ranking of Ca (capability dispersion = 
 

c Cca). 
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B Robustness of Empirics 

B.1 Robustness of product space regressions 

Table B.1: Cross-regressions of Φpp ′ , Γpp ′ , and ˜ Γpp ′ (max distance within pair) 

Φpp ′ Γpp ′ Γ̃ pp ′

Φpp ′ 1 
Γpp ′ 0.37 1 
˜ Γpp ′ 0.38 0.64 1 

Notes: The table reports on the correlation coefficients for Φpp ′ , Γpp ′ , and ˜ Γpp ′ . All correlations are run 
on (882 − 88)/2 = 3828 observations. To compute the values of Γ and ˜ Γ, we take the maximum genotypic 
distance between pp ′ and p ′ p. 

Table B.2: Cross-regressions of Φpp ′ , Γpp ′ , and ˜ Γpp ′ (min distance within pair) 

Φpp ′ Γpp ′ Γ̃ pp ′

Φpp ′ 1 
Γpp ′ 0.26 1 
˜ Γpp ′ 0.35 0.75 1 

Notes: The table reports on the correlation coefficients for Φpp ′ , Γpp ′ , and ˜ Γpp ′ . All correlations are run 
on (882 − 88)/2 = 3828 observations. To compute the values of Γ and ˜ Γ, we take the minimum genotypic 
distance between pp ′ and p ′ p. 

B.2 Robustness of appearance regressions 
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Table B.3: Different definition of appearance (1) 

(1) (2) (3) (4) (5) (6) 

log ωt 
cp 0.015*** 0.065*** 0.012*** 0.009*** 0.010*** 0.047*** 

(0.001) (0.003) (0.001) (0.002) (0.002) (0.004) 
Adj. R2 0.01 0.05 0.02 0.04 0.04 0.06 
N 37563 37563 37563 37563 37563 37563 

log µ̃t
cp 0.082*** 0.040*** 0.103*** 0.034*** 0.034*** 0.048*** 

(0.006) (0.007) (0.006) (0.010) (0.010) (0.011) 
Adj. R2 0.00 0.04 0.02 0.04 0.04 0.06 
N 37570 37570 37570 37570 37570 37570 

log ωt 
cp 0.013*** 0.065*** 0.010*** 0.008*** 0.008*** 0.045*** 

(0.001) (0.003) (0.001) (0.003) (0.003) (0.004) 
log µ̃t

cp 0.026*** 0.043*** 0.042*** 0.025** 0.025** 0.031*** 
(0.007) (0.007) (0.010) (0.010) (0.010) (0.011) 

Adj. R2 0.01 0.05 0.02 0.04 0.04 0.06 
N 37563 37563 37563 37563 37563 37563 

Controls ct pt c,p c,p,t ct,pt 

Notes: The table reports three sets of regressions following Equation 11: the first, including only pheno-
typic density (log ωt 

cp ); the second, only genotypic proximity (log µ̃t 
cp ); the third, both. The dependent 

variable is defined as yt cp = 1[(RCAt+1 
cp − RCAt 

cp ≥ 0.5) ∩ RCAt+1 
cp > 1|RCAt 

cp < 1]. Robust standard 
errors in parentheses. Significance is indicated by *(10%), **(5%), and ***(1%). 
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Table B.4: Different definition of appearance (2) 

(1) (2) (3) (4) (5) (6) 

log ωt 
cp 0.028*** 0.091*** 0.026*** 0.022*** 0.022*** 0.080*** 

(0.001) (0.003) (0.001) (0.003) (0.003) (0.005) 
Adj. R2 0.02 0.05 0.03 0.04 0.05 0.06 
N 37563 37563 37563 37563 37563 37563 

log µ̃t
cp 0.144*** 0.077*** 0.173*** 0.052*** 0.052*** 0.066*** 

(0.007) (0.008) (0.008) (0.012) (0.012) (0.013) 
Adj. R2 0.01 0.04 0.02 0.04 0.04 0.06 
N 37570 37570 37570 37570 37570 37570 

log ωt 
cp 0.027*** 0.092*** 0.026*** 0.020*** 0.021*** 0.079*** 

(0.001) (0.003) (0.001) (0.003) (0.003) (0.005) 
log µ̃t

cp 0.029*** 0.081*** 0.008 0.029** 0.028** 0.037*** 
(0.007) (0.008) (0.012) (0.012) (0.012) (0.013) 

Adj. R2 0.02 0.05 0.03 0.04 0.05 0.06 
N 37563 37563 37563 37563 37563 37563 

Controls ct pt c,p c,p,t ct,pt 

Notes: The table reports three sets of regressions following Equation 11: the first, including only phe-
notypic density (log ωt 

cp ); the second, only genotypic proximity (log µ̃t 
cp ); the third, both. The de-

pendent variable is defined as yt cp = 1[RCAt+1 
cp > 1|RCAt 

cp < 1]. Robust standard errors in parenthe-
ses.Significance is indicated by *(10%), **(5%), and ***(1%). 
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Table B.5: Two-way clustered standard errors. 

(1) (2) (3) (4) (5) (6) 

log ωt 
cp 0.016*** 0.076*** 0.014*** 0.007 0.008 0.052*** 

(0.002) (0.012) (0.002) (0.006) (0.006) (0.014) 
Adj. R2 0.01 0.06 0.02 0.05 0.06 0.08 
N 37563 37563 37563 37563 37563 37563 

log µ̃t
cp 0.101*** 0.052*** 0.124*** 0.040*** 0.040** 0.061*** 

(0.018) (0.018) (0.017) (0.015) (0.015) (0.017) 
Adj. R2 0.00 0.05 0.02 0.05 0.06 0.07 
N 37570 37570 37570 37570 37570 37570 

log ωt 
cp 0.014*** 0.076*** 0.009*** 0.005 0.006 0.050*** 

(0.002) (0.012) (0.002) (0.006) (0.006) (0.014) 
log µ̃t

cp 0.042** 0.056*** 0.065*** 0.035** 0.034** 0.042*** 
(0.016) (0.015) (0.019) (0.014) (0.013) (0.015) 

Adj. R2 0.01 0.07 0.02 0.05 0.06 0.08 
N 37563 37563 37563 37563 37563 37563 

Controls ct pt c,p c,p,t ct,pt 

Notes: The table reports three sets of regressions following Equation 11: the first, including only pheno-
typic density (log ωt 

cp ); the second, only genotypic proximity (log µ̃t 
cp ); the third, both. The dependent 

variable follows the definition in Equation 10. Standard errors clustered at country and product level. 
Significance is indicated by *(10%), **(5%), and ***(1%). 
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Table B.6: Capability-enhanced appearance regressions (including density) 

(1) (2) (3) (4) (5) (6) 

log µ̃t
cp 0.036*** 0.053*** 0.047*** 0.025** 0.026** 0.034*** 

(0.008) (0.009) (0.012) (0.012) (0.012) (0.013) 
req t cp -0.519*** -0.175** -0.235** -0.299*** -0.296*** -0.161 

(0.084) (0.086) (0.101) (0.103) (0.103) (0.102) 
edut

c -0.615*** -0.358*** -0.426*** -0.351*** 
(0.097) (0.113) (0.116) (0.117) 

req t cp × edut 
c 0.219*** 0.084** 0.121*** 0.148*** 0.147*** 0.082* 

(0.037) (0.038) (0.043) (0.044) (0.044) (0.044) 
log ωt 

cp 0.014*** 0.076*** 0.009*** 0.005* 0.006** 0.050*** 
(0.001) (0.003) (0.001) (0.003) (0.003) (0.004) 

Adj. R2 0.02 0.07 0.03 0.06 0.06 0.08 
N 31920 31920 31920 31920 31920 31920 
Controls ct pt c,p c,p,t ct,pt 

Notes: The table reports the regression described in Equation 12: the regressors are genotypic proximity 
(log µ̃t

cp ), the (weighted) average years of education necessary for missing occupations (reqtcp, in logs), 
the country’s average years of education (edut

c, also in logs), the interaction term, and density (log ωt 
cp 

). The dependent variable follows the definition in Equation 10. Robust standard errors in parentheses. 
Significance is indicated by *(10%), **(5%), and ***(1%). 

Table B.7: Capability-enhanced appearance regressions (alternative measurement) 

(1) (2) (3) (4) (5) (6) 

log µ̃t
cp 0.100*** 0.051*** 0.124*** 0.032*** 0.034*** 0.056*** 

(0.007) (0.009) (0.009) (0.012) (0.012) (0.013) 
req t cp -0.049*** -0.054*** 0.015 -0.003 -0.003 0.004 

(0.006) (0.006) (0.010) (0.010) (0.010) (0.010) 
edut 

c 0.008*** -0.000 0.010* 0.031*** 
(0.003) (0.003) (0.005) (0.007) 

req t cp × edut 
c 0.021*** 0.021*** 0.013*** 0.016*** 0.015*** 0.014*** 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Adj. R2 0.01 0.06 0.03 0.06 0.06 0.07 
N 31835 31835 31835 31835 31835 31835 
Controls ct pt c,p c,p,t ct,pt 

Notes: The table reports the regression described in Equation 12: the regressors are genotypic proximity 
(log µ̃t

cp ), the (weighted) share of missing occupations that require tertiary education (reqtcp, in logs), 
the country’s share of population with tertiary education (edut

c, also in logs), and the interaction term. 
The dependent variable follows the definition in Equation 10. Robust standard errors in parentheses. 
Significance is indicated by *(10%), **(5%), and ***(1%). 
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C Additional analysis on the role of capabilities in 
the development process 

C.1 Periphery Trap 

Industries differ not only in the number and composition of capabilities they require but 

consequently also in their position among the network of industries. In turn, this matters 

for a country’s prospects to grow out of an industry: More central industries provide many 

diversification opportunities into nearby industries while such opportunities are scarce 

when growing out of more peripheral industries. In turn, this implies that ceteris paribus 

countries that are located in the periphery of the product space have worse diversification 

prospects. This observation is not new and it is known at least since Hidalgo et al. (2007). 

But our genotypic analysis allows for a novel perspective on the empirical relevance of 

these arguments as we now explain. 

Figure C.1 shows for a selection of 6 industries the distribution of distances of a country 

from the remaining industries if that country was only in the respective industry. The 

mean distance is indicated by a red vertical line. The industries are: the industry with the 

fewest occupations (3161 – leather and hide tanning); two other industries in the textile 

cluster (3162 – footwear manufacturing; and 3159 – apparel accessories manufacturing); 

tobacco manufacturing (3122), which leads on the lower-right diversification path in Fig-

ure 3; fruit and vegetable preserving (3114), which is a downstream industry of agriculture 

and in the food cluster in Figure 3; and a mining industry (2122 – metal ore mining). All 

of these industries are rather peripheral in the product space but still, there are important 

differences in terms of how connected they are: On average, fruit and vegetable preserv-

ing (3114), which is also the industry that is most diversified in terms of its occupational 

inputs, is connected best, while metal ore mining (2122) has the lowest connectivity with 

the network of industries. What is more, this industry has very few industries at low 

distances, which is also the case for tobacco manufacturing (3122). In turn, this might 

hinder a gradual diversification were a country sequentially enters industries and moves 

closer to the network of industries. After all, it may be more important for a country’s 

diversification prospects to have some stepping stones in reach which allow building up 

new capabilities than being initially closer on average to the network of industries. 

To take this point home, we consider a simple probabilistic model of diversification. Specif-

ically, suppose that a country is able to enter a product p if its profits from doing so exceed 

the fixed costs of entry. Suppose further that a country’s profit potential in an industry 
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Figure C.1: Periphery trap: Initial distances 

(a) 3161 – Leather & hide (b) 3162 – Footwear manuf. (c) 3159 – Apparel accessories 

(d) 3122 – Tobacco manuf. (e) 3114 – Fruit & veg. pres. (f) 2122 – Metal ore mining 

Notes: The figure shows for 6 different industries as indicated in the titles of the respective panels a 
histogram of distances from all remaining industries for a hypothetical country that is only present in 
the respective industry. The vertical red line indicates the mean distance. 

declines (i) in its distance from that industry and (ii) in the country’s diversification. The 

latter reflects that countries become richer as they diversify which increases the opportu-

nity cost for hiring labor in a new industry. The former reflects e.g. a lower productivity in 

an initial learning phase for new occupations. Because different occupations are comple-

mentary, this gives rise to an exponential decline of a country’s productivity and, hence, 

profits in an industry with respect to its distance from that industry. In summary, a 

country c can profitably enter industry p if 

µ∗ 
cp ≤ κ1 log (f cp Icκ3 + κ2) , (C.1) 

where fcp denotes the fixed cost of entry in product p as detailed momentarily, Ic the 

diversification of country c (i.e., the number of industries it currently has). Further 

details on Condition (C.1) and how it can reflect entry in richer models are provided 

in Appendix D.2. Here we simply note that κ1 and κ2 are parameters that capture 2 

fundamental forces: (i) how sensitive a country’s productivity in an industry is to its 

distance from that industry (κ1). (ii) how difficult diversification is initially (κ2). κ3 
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governs the size of the fixed costs. 

To shed light on the implications of a country’s initial position in the product space for 

its development prospects, we use Condition (C.1). Specifically, starting in turn from 

each of the six industries considered in Figure C.1, we simulate 500 development paths, 

where at each step we draw fixed costs of entry fcp from a uniform distribution on [0, 1] 

for all industries not present in the country and then have the country enter the nearest 

industry among the ones satisfying Condition (C.1). If no such industry exists, further 

entry is not feasible, the diversification stops, and we store the number of industries the 

country grew into before it got stuck in this iteration. In our baseline calibration, we 

choose κ1 = −.1 and κ2 = .08, which implies that among the simulations starting from 

industry 3161 (leather and hide tanning), the share of countries that started to diversify 

and their diversification at the end of the process are broadly in line with the data.22 

Figure C.2 plots for each of the six industries a histogram of diversifications at the end of 

the simulated development path across the 500 iterations. Robustness checks are provided 

in Appendix C.3. The figure reveals striking differences across the industries: First, 

countries have lower prospect to grow out of industries 3122 and 2122 when compared to 

industry 3161 even though these industries are much more diversified in terms of their 

occupational inputs and industry 3122 also is closer on average to the rest of the network— 

see Figure C.1. Interestingly, the poor diversification prospects when starting from 2122— 

see panel (f)—points to a novel type of resource curse that does not operate through higher 

wages—the classical argument—but through the peripheral location of metal ore mining 

in the product space. Second, countries are much more likely to grow out of industry 3162 

than out of industry 3122 even though they have about the same average distance from the 

network of industries, highlighting the importance of nearby stepping stones that can lead 

on a pathway to prosperity. Third, 3114, which is by far closest to the network of industries 

and uses the most occupations nevertheless leads to similar levels of diversification when 

compared to industries from the textile cluster—3162 and 3159: When compared to these 

industries, the risk of getting stuck at very early stages of diversification is somewhat 

lower in industry 3114. On the contrary, when successfully diversifying, the development 

process tends to stop at somewhat lower levels of diversification. This is a reflection of 

the more peripheral structure of the natural development path out of 3114—see Figure 3. 

We will get back to this point when discussing entry traps next. 

22Specifically, among the set of countries with less than 20 industries in 1992 to 1996 in our sample, 
30% diversified their export by at least 5 industries and 50% compared to their baseline diversification. 
Moreover, the most diversified countries in our sample have around 40 − 50 industries—see Figure 6(b). 
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Figure C.2: Periphery trap: Simulated development paths 

(a) 3161 – Leather & hide (b) 3162 – Footwear manuf. (c) 3159 – Apparel accessories 

(d) 3122 – Tobacco manuf. (e) 3114 – Fruit & veg. pres. (f) 2122 – Metal ore mining 

Notes: This figure summarizes the simulation as detailed in the text. Each panel shows a histogram of 
the number of successful diversification jumps across 10’000 simulated development paths starting from 
the respective industry as indicated in the title of the panel. The vertical red line indicates the mean. 

C.2 Entry Trap 

An issue closely related to but distinct from the periphery trap is an entry trap. The 

periphery trap can arise if a country is located in the periphery of the product space at 

early stages of development. As opposed to that, an entry trap can arise at later stages 

of development and it is a consequence of the two opposing effects of entry: On the one 

hand, economic diversification makes available additional capabilities and, hence, brings 

a country closer to its missing industries. On the other, diversification leads to growth 

and, hence, higher wages, which lowers profits from entering in new industries. An entry 

trap can occur if the latter effect dominates. 

We can use our previous arguments to illustrate the potential importance of entry traps. 

Figure C.3 zooms into Figure 6(c) at the range of 64 to 67 industries. To this figure, 

we have added the right-hand side of Condition (C.1) using our parameter values from 

before, but holding constant the fixed cost f at .059 to make entry into different industries 

directly comparable. With 65 industries, the closest still missing industry is 3365. This is 
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Figure C.3: Entry trap 
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Notes: Simulated environment of growth by diversification. The horizontal axis represents time. On the 
vertical axis we represent the two sides of the inequality in ??: the solid grey line is the right-hand side -
thus representing the number of industries present in country c. The left-hand side is plotted with dots. 
Entry is possible only when the dot is above the solid line (highlighted with red diamonds). While in 
Figure C.2 we assume that the simulated country enters the closest industry, here we show other feasible 
paths, one of which leads to stagnation. The labels indicate the 4-digit Naics code of the added industry. 
The industries involved are: 3113 - Sugar and Confectionery; 3114 - Fruit and Vegetable Preserving; 3118 
- Bakeries and Tortilla; 3119 - Other Food; 3122 - Tobacco. 

the one considered in Figure 6(c). Given our parameter choices, there is, however, another 

industry 3231 that the country might grow into. Entry is often not a top-down policy 

decision, but the result of firms successfully organizing themselves to become competitive 

in something that is new to them. It is, thus, entirely possible that the firms manag-

ing to do so faster are not the ones entering the industry that is closest. Interestingly, 

in our illustrative example that would be beneficial for growth as there are additional 

diversification opportunities when entering 3231 in step 66 but not when entering 3365. 

We can also use our simulation from before to shed light on potential bottlenecks in the 

network of industries. To that end, we summarize across all 3000 iterations—500 for each 

starting industry in Figure C.2—and for every industry how likely a country is to keep on 

diversifying upon entering an industry. Table C.1 shows the top and bottom 10 industries. 

Interestingly, the top 10—all of which (almost) always allowed further diversification 

upon entry—are manufacturing industries at or close to the core of the product space. 

Conversely, the bottom 10 industries are more peripheral and either rather advanced (3391 

and 3364) or in the periphery of the product space (e.g. 3231, 2122, 3241)—see Figure 3. 
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Table C.1: Top and bottom 10 industries by prospects of further diversification 

NAICS Description Share 
3322 Cutlery & handtool manufacturing 1.000 
3352 Household appliance manufacturing 1.000 
3325 Hardware manufacturing 1.000 
3321 Forging & stamping 1.000 
3359 Other electr. equipm. & component manufacturing 1.000 
3327 Screws, nuts, and bolts 0.999 
3336 Engine, turbine, and power transmission equipment 0.998 
3334 Ventilation, hearing, air conditioning 0.998 
3361 Motor vehicle manufacturing 0.997 
3332 Industrial machinery manufacturing 0.996 
. . . 

. . . 
. . . 

3365 Railroad rolling stock manufacturing 0.893 
3366 Ship & boat building 0.891 
3254 Pharmaceutical and medicine manufacturing 0.887 
2122 Metal ore mining 0.884 
3231 Printing support activities 0.872 
3364 Aerospace product & parts manuf. 0.872 
3262 Rubber product manufacturing 0.870 
3241 Petroleum & coal products manuf. 0.865 
3391 Medical equipment manufacturing 0.855 
2111 Oil & gas extraction 0.781 

Notes: This table shows for our previous simulation the top and bottom 5 industries in terms of the 
following ratio: 

# iterations entered industry and continued to diversify 
# iterations entered industry 

. 

The ratio is computed over all 3000 iterations—500 for each panel in Figure C.2. 

2122 and 3241 are extractive industries or their downstream industries, which further 

supports our previous argument that the peripheral location of these industries in our 

genotypic product space can give rise to a novel type of resource curse. These industries 

require skills that are rather specific and hence, are of little use for future diversification 

into new industries. Note that this is different from the conventional view on the resource 

curse. Loosely speaking, the resource curse is about the quantity of production factors 

being tied up in extractive industries, which lowers competitiveness in other industries. 

We treat all industries symmetric in this sense. By contrast, in our simulations, these 

industries can hinder future diversification because of the type of skills they require. 
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C.3 Robustness of Simulation in Section C.1 

In this appendix, we present three robustness checks for Figure C.2. Figure C.4 presents 

simulations where—instead of jumping to the nearest feasible industry—the country 

jumps to a randomly selected feasible industry. Figure C.5, uses distances based on 

employment shares as opposed to wage-bill shares. Lastly, Figure C.6 considers a case 

where the fixed cost of entry increase sub-linearly with the industrial diversification, that 

is, where we modify Equation (C.1) as follows 

µ∗ 
cp ≤ κ1 log 

 
f cp(Ic)

.5 κ3 + κ2 

 
. (C.2) 

Figure C.4: Periphery trap: Simulated development paths—robustness: random entry 

(a) 3161 – Leather & hide (b) 3162 – Footwear manuf. (c) 3159 – Apparel accessories 

(d) 3122 – Tobacco manuf. (e) 3114 – Fruit & veg. pres. (f) 2122 – Metal ore mining 

Notes: This figure provides a robustness check for Figure C.2 where at each step the country enters a 
randomly selected feasible industry. The figures are based on 5’000 iterations each. 

D Technical Details 

D.1 Relation Between Phenotypic and Genotypic Measures 

In this appendix we show (i) that the phenotypic measures entail important information 

about proximity and density in a capabilities-based world but that (ii) they do not in 
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Figure C.5: Periphery trap: Simulated development paths—robustness: employment 
shares 

(a) 3161 – Leather & hide (b) 3162 – Footwear manuf. (c) 3159 – Apparel accessories 

(d) 3122 – Tobacco manuf. (e) 3114 – Fruit & veg. pres. (f) 2122 – Metal ore mining 

Notes: This figure provides a robustness check for Figure C.2 where distances have been computed based 
on employment shares instead of wage-bill shares. The figures are based on 5’000 iterations each. 

general correctly measure technological proximities. 

Considering proximities between pairs of products first, it is well known that the pheno-

typic proximity in Equation (3) can be re-expressed as a minimum conditional probability 

Φ pp ′ = 

 
c M cp M cp ′ 

max( 


c M cp, 
 

c M cp ′ ) 

= min {Pr[p ′ |p]; Pr[p|p ′ ]} . 

Pr[p ′ |p] denotes the probability that a country exports product p conditional on it ex-

porting product p ′ . Interestingly, this measure does indeed entail important information 

on the capability overlap between pairs of products, at least if capability endowments 

are random. In particular, suppose that all countries successfully export all products for 

which they have all the required capabilities. Suppose further that a country c has any 

given capability with probability rc ∈ (0, 1), analogous to Hausmann and Hidalgo (2011). 

Then, the unconditional probability that the country can make a product p that requires 

np capabilities is 

Pr[M cp = 1] = (rc)
np . 
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Figure C.6: Periphery trap: Simulated development paths—robustness: Equation (C.2) 

(a) 3161 – Leather & hide (b) 3162 – Footwear manuf. (c) 3159 – Apparel accessories 

(d) 3122 – Tobacco manuf. (e) 3114 – Fruit & veg. pres. (f) 2122 – Metal ore mining 

Notes: This figure provides a robustness check for Figure C.2 using Equation (C.2). The figures are 
based on 5’000 iterations each. 

Conditional on making p ′ , we know that a country has all the capabilities needed to make 

p ′ . Hence, conditional on exporting p ′ , the probability that country c can also make 

product p is 

Pr[M cp = 1|M cp ′ = 1] = (rc) 
n p¬p ′ , 

where np¬p ′ denotes the number of capabilities that p requires but p ′ not. The key point 

to note is that this probability is increasing in the capability overlap between p and 

p ′ . This means that if all products require the same number of capabilities—and, thus, 

Pr[p ′ |p] = Pr[p|p ′ ]—the phenotypic proximity is increasing in the genotypic proximity. 

More generally, this suggests that the phenotypic proximity entails important information 

about the capability overlap between pairs of products, albeit it typically does not measure 

this overlap correctly. 

Additional problems arise when it comes to density as this requires aggregating pairwise 

distances between products into a distance between a country and a product, i.e., a basket 

of products and a single product. In general, this requires accounting for the fact that 

the products in a country’s export basket differ in their respective capability overlaps. 
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The genotypic approach does so by backing out country capability endowments first. 

The phenotypic approach instead does not so in general, unless strong restrictions are 

imposed.23 

D.2 Further details on Condition (C.1) 

In this appendix, we show how Condition (C.1) captures in a simple way the key entry 

dynamics in Diodato et al. (2022). 

Diodato et al. (2022) consider a Small Open Economy (SOE) that grows by diversify-

ing its export basket, such that the wage rate is proportional to IS 
1/σ , where IS is the 

number of industries in the SOE and σ a parameter capturing the gains from industrial 

diversification.24 Entering a new industry involves a fixed cost in terms of labor, i.e., this 

fixed cost is proportional to the wage rate. Entry further requires training workers in all 

occupations that are new to the SOE, and the productivity of these workers is lowered 

by a factor λ < 1 in an initial learning period. Upon entry, a firm makes profits that are 

thus decreasing in its distance µ∗ 
Sp from that industry and, quite intuitively, in the wage 

rate. Taken together, firms in the SOE find it profitable to enter industry p if 

γ 
 
λµ ∗ 

Sp 
σ−1 1 

IS 
≥ fSp, 

where γ is a constant, σ − 1 governs how sensitive profits are to the SOE’s distance from 

industry p, and fSp are the fixed costs of entry. 25 Taking logs and re-arranging terms, we 

get 

µ∗ 
Sp ≤ 

1 
(σ − 1) log(λ)   

κ1 

κ1 log 

 f Sp IS γ
−1  
κ3 

  , 

where the inequality gets reversed because log(λ) < 0. Condition (C.1) generalizes this 

by introducing an additional additive term for the fixed cost, κ2 
IS

such that total fixed cost 

of entry are 

f Sp + 
κ2 

IS 
. 

23The easiest way of seeing this is by considering two products A and B with the same capability 
requirements. Then, phenotypic approaches will generally ascribe a country greater density for a third 
product C if it has both products A and B compared to when it has only one of them, while conditional 
on having A adding B does not add to a country’s capability endowments and vice versa. 

24They consider an Armington (1969)-type model where each country is equipped with a distinct 
variety in each industry and where these varieties are then aggregated in a CES consumption aggregator 
to industry bundles. In such case σ is the constant elasticity of substitution in consumption. 

25This condition exactly maps onto Condition (B.2) in Diodato et al. (2022) if the fixed cost of entry 
and the learning cost have a small effect on the equilibrium wage in the SOE in the entry period—see 
their Equation (13). 
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This term governs how hard the initial jump on a pathway to prosperity is. 
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