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Abstract Economic development is a path-dependent process in which countries accu-
mulate capabilities that allow them to move into more complex products and industries.
Inspired by a theory of capabilities that explains which countries produce which products,
these diversification dynamics have been studied in great detail in the literature on eco-
nomic complexity analysis. However, so far, these capabilities have remained latent and
inference is drawn from product spaces that reflect economic outcomes: which products
are often exported in tandem. Borrowing a metaphor from biology, such analysis remains
phenotypic in nature. In this paper we develop a methodology that allows economic
complexity analysis to use capabilities directly. To do so, we interpret the capability re-
quirements of industries as a genetic code that shows how capabilities map onto products.
We apply this framework to construct a genotypic product space and to infer countries’
capability bases. These constructs can be used to determine which capabilities a country
would still need to acquire if it were to diversify into a given industry. We show that this
information is not just valuable in predicting future diversification paths and to advance
our understanding of economic development, but also to design more concrete policy in-
terventions that go beyond targeting products by identifying the underlying capability
requirements.
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1 Introduction

Economic development is often cast as a process of structural transformation in which
countries diversify by entering new economic activities. A literature that goes back to
at least [Kim/ (1980) and |Abramovitz| (1986) has argued that, to transform the structure
of their economies, countries need specific “capabilities”. Ever since, scholars have en-
deavored to operationalize the notion of capabilities empirically (Archibugi and Coco,
2005; Fagerberg and Srholec| [2008). This undertaking has proved fraught with difficul-
ties: it requires an exhaustive list of capabilities, empirical strategies to measure them and
weights that determine each capability’s importance. Recently, an alternative approach
has emerged in a field that we will refer to as economic complexity analysis (ECA).
This field considers capabilities to be pivotal determinants of the industrial structure of
economies: countries produce the goods and services for which they have all prerequi-
site capabilities. Based on this reasoning, Hidalgo et al.| (2007) propose that one can
assess which products require similar capabilities by observing which products are often
produced by the same countries. This approach has been successfully applied to predict
diversification trajectories of countries, regions and cities, not only in terms of their eco-
nomic output, but also in the technological and scientific areas they are able to enter
(Hidalgo et al., 2018).

While this notion of similarity has an implied technological root — the degree of similarity
among products must in some way be related to their capabilities — the measurement of
the product space abstracts from how products are made and focuses, instead, on what
is more readily observable: the final output of countries. To borrow a metaphor from
biology, we argue that this approach is phenotypic in nature: it connects products not by
similarities in their “DNA”, i.e., the capabilities they require, but by the way this DNA is
expressed in the mix of products that countries export.[] In spite of its predictive utility,
this phenotypic approach makes it hard to ask a number of important questions about
economic development and development policy, such as: Which capabilities does a country
have? Which products are feasible with this set of capabilities? Which capabilities does
the country need to acquire to enter a specific new economic activity? And: are some
capabilities more easily acquired than others? To overcome these deficiencies, we build on

previous work by [Hausmann and Hidalgo (2011)), and |Diodato et al.| (2022)) to propose a

L Although we borrow this terminology from evolutionary theory developed in biology, we do not take
a strong position in the debate on generalized Darwinism (e.g., |Aldrich et all |2008). In fact, we will
develop an empirical methodology that we hope will prove useful to test and develop a broad range of
theoretical frameworks.



tractable approach to constructing a genotypic product space. Doing so, we will not only
map the capability requirements of products, but also infer the capability endowments of
countries, only using widely available data. This, in turn, offers a new view on a country’s
capability base, as well as the opportunities and challenges the country faces on its future

development path.

The central idea we leverage is that one can interpret the capability requirements of
industries as something like a genetic code, a mapping from capabilities to products.
This allows augmenting previous approaches to the product space in three ways: first, we
can calculate the distance between two industries by counting the number of capabilities
that are required in one, but not in the other. Second, by focusing on non-tradeable
inputs and assuming strong limits to substitution among them, we can infer which such
inputs are available in a given economy. In particular, under such assumptions, a country
can only export a product if it possesses all non-tradeable inputs (or, capabilities) that
the product requires. Third, once input requirements of products and input endowments
of countries are known, we can directly compute the genotypic proximity between any
product and any country. This allows determining which capabilities need to be acquired

to render specific diversification paths feasible.

We apply this methodology focusing on capabilities embedded in the workforce and show-
case how these capabilities help predict and understand the diversification of countries’
export portfolios. We focus on capabilities connected to human capital, because the plau-
sibility of our framework hinges on the assumption that inputs are non-tradeable and
non-substitutable. These conditions are likely to be approximately fulfilled for human
capital because, on the one hand, in many jobs, human capital is highly specific (for in-
stance, there is no reasonable rate of substitution between car engineers and accountants)
and, on the other hand, workers’ mobility is strongly constrained by geographic distance
and country borders. However, the framework itself allows the use of any type of input

that can be considered a capability in the aforementioned sense.

We proceed as follows. First, we construct a matrix that describes the occupational
requirements for each industry in the economy, using the US Bureau of Labor Statistics’
Occupational Employment Statistics. We use the resulting capability requirements matriz
to construct a genotypic product space and show how this space has certain advantages
over its phenotypic counterpart. Next, we combine the capability requirements matrix
with data on countries’ exports to infer the capability endowments of countries. We test

the validity of our genotypic framework in an analysis of how countries diversify their



export baskets. Finally, we discuss implications.

Doing so reveals numerous conceptual advantages linked to the genotypic approach’s
clear interpretation of what it means that two products are related. These advantages
express themselves in more informative descriptions of countries’ capability bases, as well
as of the developmental bottlenecks they imply. Empirically, we show that our genotypic
proximity has comparable predictive performance to standard phenotypic approaches,
while providing a more linear mapping between proximity and diversification probabilities.
Furthermore, we show how genotypic proximities can be augmented by incorporating
country-product specific information on the complexity of missing capabilities, which
further improves predictions. Finally, we show how the genotypic approach can be used

in policy-making and sketch an agenda for future research in a genotypic approach to
ECA.

2 Literature

Our work is inspired by and complements a vast body of research on structural transfor-
mation and catching up in economic development (Abramovitz, 1986; Hirschman, 1958;
Lall, [1992; |Kim), [1980; [Fagerberg et al., 2010)). A central question in this literature is why
productivity differs so widely across economies and a core explanation is that countries
differ in their technology. Since Abramovitz] (1956) assertion that the Solow residual is
nothing but a “measure of our ignorance”, a group of scholars has tried to capture a coun-
try’s state of technology by studying social (Abramovitz, [1986)) and technological (Kim,
1980)) capabilities. This set in motion a broad effort in evolutionary economics (Nelson
and Winter, 1982)) to identify and measure these capabilities. However, such an endeavor
faces several challenges (see, for instance, |[Fagerberg et al., 2010). First, modern economies
typically rely on a wide variety of capabilities[’] Second, capabilities are often inherently
difficult to observe, because they have tacit (Polanyi, |1962) components. Third, even if
we had a more or less exhaustive list of capabilities and ways to identify them, we would
still need to determine how to avoid double-counting closely related capabilities and how

to weigh capabilities according to their importance.

An alternative approach to understanding economic development is formulated in New

Structuralist Economics (NSE, Lin, 2011)). Building on “old” structuralist economics

2For instance, Lall| (1992) considers three broad classes of capabilities: physical investment capabilities
(related to, for instance, the financial sector), human capital (related to health, schooling and training)
and technological capabilities (related to research, innovation and commercialization).



(e.g., Hirschman|, [1958; |Prebisch| [1962), NSE focuses on structural transformation. It
argues that productivity and future development prospects are intimately linked to the
type of activities that economies engage in (Hausmann et al., 2007), with self-sufficient
agriculture at the bottom rungs of the developmental ladder and industrial activities
in machinery and electronics, as well as advanced business services, at the top, akin to
economic models with a ‘ladder’ of development (Krugman,|1985; Lucas| 1993 |Hausmann
and Rodrik|, [2003; |Costinot} 2009; Sutton and Trefler] [2016; Schetter] |2020; Atkin et al.,
2021). Countries cannot freely choose their activities. Instead, they specialize according
to their comparative advantage, which depends on their factor endowments, and so does
their potential for structural transformationf| This includes the traditional factors of
land, capital and labor. Other important factors are influenced by government actions:
the economy’s so-called hard and soft infrastructure (Lin|, 2011), where the former refers
to physical infrastructure (roads, ports, electricity grids), whereas the latter includes less
tangible infrastructure, such as institutions, universities, or financial regulation. These
factor endowments bear a striking resemblance to the capabilities identified in evolutionary
economics. However, whereas the capability literature mostly focused on the link between
countries’ composite capabilities and aggregate growth (for instance, as expressed in their
GDP per capita), NSE pays special attention to how specific factor endowments facilitate

the development of some sectors but not others [f]

NSE studies structural transformation in broad categories, both in terms of factor endow-
ments and the sectors they support — agriculture, heavy industry, high tech industries,
etc.. In this paper, we instead build on a closely related field, economic complexity anal-
ysis (ECA). Like NSE, ECA starts from the assumption that different activities require
different capabilities. However, these capabilities tend to be more fine-grained. Further-
more, ECA assumes strong complementarities among capabilities, with little room for
substitution between them. As a consequence, economies can only produce the products
for which they possess all required capabilities. Just like the production factors of NSE,
capabilities can be physical, like specific pieces of equipment or infrastructure, or intangi-
ble, as in the case of institutions or technological expertise. However, not all capabilities

matter equally in determining which products can be produced where, and ECA therefore

3The NSE paradigm is thus related to a voluminous literature on structural change (e.g. [Kuznets
1957; [Kongsamut et al.[2001; |[Foellmi and Zweimtller||2008; Buera et al.|2022)) and in particular papers
analyzing structural change in open economies (e.g. [Matsuyama)|1992; Uy et al.[2013; Matsuyama|[2019)),
where NSE puts a strong emphasis on the ‘capabilities’ that drive structural transformation (see below).

4Another difference is that evolutionary economists, emphasizing innovation, often concentrate on
technological as opposed to production capabilities, whereas the new structuralist approach of Lin does
not give preference to one over the other.



focuses on capabilities that meet a number of criteria: they should be non-ubiquitous,
hard to access from outside the economy (i.e., they should be non-tradable), but relatively

easy to access by different firms within the economyEl

Even with these restrictions, ECA shares the core methodological challenges of the earlier
capability-based approaches, namely capabilities’ high multiplicity, limited observability
and unknown weights. Therefore, a crucial methodological innovation of ECA is that
it bypasses enumerating capabilities and identifying capability requirements of products
and capability endowments of economies. To do so, ECA developed abstract networks
based on co-occurences that express similarities in capability requirements in so-called
product (Hidalgo et all 2007), industryff] (Neffke et al. 2011)), technology
or multilayer spaces (Pugliese et al. [2019), and similarities in capability endow-
ments in country (Bahar et al., 2014)) or city spaces. Such spaces are highly predictive of

diversification patterns—see also [Hausmann and Klinger| (2006); Boschma and Frenken|
(2006)); [Frenken and Boschmal (2007); Hidalgo et al| (2018)[] We start from a conceptual
framework that links products to underlying capabilities (Hidalgo and Hausmann| 2009;
Hausmann and Hidalgo, 2011; |O’Clery et al. [2021). We then add to the literature by

exploiting the underlying capability structure directly to learn about the product space

and related diversification. Within the wider literature in economic geography, our work
thus also relates to efforts to understand co-agglomeration patterns of industries (Ellison
et al. 2010; |Diodato et al., 2018; Steijn et al., 2022) or co-exporting patterns of prod-

ucts (Bahar et al. 2019). Such co-agglomeration and co-exporting patterns are nothing

else than industry or product spaces in the parlance of economic complexity analysis and
our genotypic approach may therefore also offer new ways to shed light on the drivers
of agglomeration externalities. Finally, the various implications for policy of our work
contribute to an expanding set of papers that explores how economic complexity analysis
can be used as a policy framework (Hidalgo, [2023; Balland et al., [2018; [Boschma et al.|
2021}; Li and Neffke| 2023)).

5See|Neffke et al.|(2018)) for a more complete exposition as well as similarities to the notion of sustained
competitive advantage in management science.

6The idea of an industry space can be traced to the management literature (Teece et al.l|1994), where
scholars were confronted with the same obstacles to identify and measure the resource bases of firms.

"Furthermore, to get a sense of the extent of an economy’s capability base, it developed metrics of
economic complexity, i.e., estimates of the completeness of an economy’s capability endowments (Hidalgo|
land Hausmann), [2009; Tacchella et al., [2012).




3 Capabilities-based view on production

At the core of ECA is the idea that modern production relies on many distinct capabilities,
and that products require overlapping but distinct subsets of these capabilities. These
capabilities are necessary inputs, i.e., making a given product entails acquiring the entire
set of capabilities that this product requires. This model of production can be succinctly
represented in matrix form (Hausmann and Hidalgo, [2011). To that end, let C be a
N, x N, dimensional binary capability-endowment matrix, where N, is the number of
countries and N, the number of capabilities. An entry of this matrix, C.,, equals one if
country c has capability a and zero otherwise. Similarly, let P be a N, x N, dimensional
capability-requirements matrix—where [V, is the number of products—whose elements,

P,., indicate whether capability a is required to produce product p.

Together, the capability-endowments matrix C' and the capability-requirements matrix P
tell us which countries can make which products. In particular, country ¢ can only make
product p if Y (1 — Cpy)Ppe = Oﬁ We can collect this information in a binary N. x N,

matrix, M, that describes which countries can make which products:

Mg, =1 [2(1 — Clo)Ppo = 0] (1)

a

where 1 [] is the indicator function that evaluates to 1 if the term in brackets is true and
zero otherwise. If countries make all the products they possibly can—a common (implicit)
assumption in the related literature—M will correspond to a matrix that represents

countries’ specialization in international trade.ﬂ

P is binary and elements F,, simply indicate whether or not the capability a is needed to
produce the product p. In what follows, we will also consider a variant of the capability-
requirements matrix, P. This matrix has elements between 0 and 1 that describe how
intensively product p makes use of capability a. Specifically, we can think of elements

P,, as representing cost shares such that ), ]5pa =1 for any p. Note that P and P are

related: whenever P,, > 0, Py, = 1 and whenever P,, = 0, P,, = 0.

8The term (1 — C.,) evaluates to one whenever a country ¢ does not have capability a, such that the
summation only equals zero if a country misses none of the capabilities that product p requires.

9A large literature in international trade suggests that countries should specialize according to their
comparative advantage. Nevertheless, standard multi-industry (or -product) gravity models do not pre-
dict zeros at the exporter-industry level, i.e., there is no specialization at the extensive industry margin
(see, e.g. |Costinot et al.|2012]). More importantly, this simplification is in line with the fact that even
relatively small rich countries like Portugal, Czech Republic or Denmark export more than 95% of the
~1200 products at the 4-digit HS-level. It is also in line with the observation that exports tend to be
‘nested’ (Hausmann et al.| 2011} [Bustos et al., |2012; Tacchella et al.,|2012; |Schetter, 2020} |Gersbach et al.,
2023).



3.1 Phenotypic approach

The previous discussions suggest that much can be learned about the underlying capabil-
ity structure without knowing the underlying matrices C' and P and by instead focusing
on the economic outcomes matrix M. This is the approach taken by the bulk of the liter-
ature on economic complexity analysis. The basic idea is simple: if capabilities represent
necessary, non-tradeable inputs (broadly defined), then the fact that a country makes a
product means that the country must have all required capabilities or, equivalently, that
the product requires only capabilities that are available in the country. Consequently,
products that require similar capabilities are likely to be exported by the same coun-
tries. This reading implies that co-exporting patterns reveal which products have similar
capability requirements, an idea that motivated the construction of the product space
(Hidalgo et al., 2007)—a network representation that connects products if they are often

co-exported.

The elements of M describe which countries export which products. In practice, they
are often determined by calculating a country’s revealed comparative advantage (RCA,

or Balassa index Balassal (1965))) in a product:

RCAy — (/z) / (z xcp/zzxcp) , ®

where z, represents the value of the exports of country ¢ in product p. The RCA compares
the share of product p in country ¢’s exports to p’s share in global exports. Values over
one indicate that the country is specialized in product p and hereafter we will say that
country c (significantly) exports product p if RCA., > 1 and set M., = 1 in such case

and 0 otherwise.

The product space is constructed based on measures of prorimity between pairs of prod-
ucts which [Hidalgo et al.| (2007)) define as:

Zc MCPMCP'

o, = )
pp maX(Zc Mep, Zc MCP’)

(3)

There are many variations in how to calculate this proximity (Li and Neftke] 2023)), the
details of which do not matter for our purposes. The key point is that these measures
all rely only on matrix M, i.e., on observed outputs, not on information about actual
capabilities. For this reason, we refer to this class of measures as phenotypic product

spaces.



The product space can be used to predict the evolution of the M matrix, that is, the
diversification of countries into new products. Intuitively, if building up new capabilities
is costly, then it should be easier for a country to move into nearby products, that is,
products that require few new capabilities. Such products should be close to the country’s

current activities where proximity is defined in terms of the topology of the product space.

Given that the product space is based on similarities between products, we need to
translate these pairwise similarities into a similarity between a country—i.e., a basket
of products—and a potential target product. Typically, this is achieved by assessing how
active the country is in products closely related to this target product, or, by determining
the “density” of an economy around each productm For instance, Hidalgo et al.| (2007)

calculate the density of country ¢ around product p, w,, as:

- Zp/ Mey @y

Wep = (4)
g Zp’ (I)pp’

Density measures have proved remarkably predictive of diversification processes well be-
yond the export portfolios of countries. Related diversification is so prevalent that it has
been coined the principle of relatedness (Hidalgo et al., 2018]). This empirical success and
the minimal data requirements explain why keeping the analysis at the phenotypic level
has had such an appeal, specially given that capability endowments and requirements are

difficult to observe and could exhibit complex and heterogeneous structures.

However, the phenotypic approach also has several shortcomings. First, there are sev-
eral ad hoc choices in the design of product spaces and density metrics (Li and Neftke,
2023). Second, phenotypic proximity measures are symmetric while the underlying ca-
pability structure often implies a directionality. Intuitively, it should be easier to move
from motorcycles to bicycles than vice-versa. Third, density measures may double-count
capabilities if products close to the focal product are also closely related to one another.
Fourth, density measures are not informative about which capabilities a country lacks
that prevent it from entering the economic activity. In other words, phenotypic measures
have much to say about which products to diversify into, but much less about how to get
there. This limits their use in devising concrete development policies. Fifth, and related
to this, density measures do not help distinguish between capabilities that may differ in

importance or how hard it is to acquire them.

10 Again, density measures can be constructed in various ways (see|Li and Neffke|,[2023, for an overview),
but all rely on product-product similarities to arrive at an estimate of how close a single product is to a
set of products.



3.2 Genotypic approach

To remedy the shortcomings of the phenotypic approach in ECA, we build on Diodato
et al.| (2022) and develop a genotypic alternative that results in genotypic proximity and
density measures. In this alternative approach we aim to develop a window directly
on a country’s capability base. Doing so requires that we can observe the capability
requirements of products, i.e., matrix P or P. We will discuss the measurement of these
matrices in Section 4l Here, we focus instead on the conceptual framework, and to that

end we simply assume for now that we are equipped with matrix P and P, respectively.

3.2.1 Genotypic proximity

Given matrices P and P, respectively, we can measure the technological proximity be-
tween two products by directly comparing their capability requirements. In particular,

consider the following measure of proximity between products p and p’, L',

Fpp/ _ Za(PpaPp’a)' (5)
2 a Pra

The numerator of eq. counts the number of capabilities that are required in both
products, p and p’, whereas the denominator counts the total number of capabilities
required in product p. Consequently, I',, indicates which share of the capabilities that
are needed to produce p is also used to produce p’. That is, I',, focuses only on the
extensive capability margin by treating all capabilities symmetrically. Alternatively, we
can weigh capabilities by how intensively they are used in the production of p, i.e., by
their cost shares (for instance, when we know that the cost share of a; in product p is

twice as large compared to as):

Ly = Z(Ppapp/a)- (6)
f‘pp/ now indicates the total cost-share in p of capabilities that are also required by product
p’. Note that we can convert these proximity measures into measures of pairwise distance

as 1 —I'p, and 1 —I',,, respectively.

Unlike the phenotypic product space, the genotypic product space is not inferred but
directly constructed from information about capability requirements of products. To see
the merit of these measures, suppose that acquiring a capability entails a fixed cost f
per capability. Then, 1 — Iy, indicates the cost of starting to produce p when a country

already produces p’ and, hence, has all the capabilities needed for p’. Instead, if the cost



of acquiring a new capability is proportional to how intensively it is used in the target
product—e.g. because of an initial learning phase (Diodato et al., 2022)—, this cost is
captured by 1 —I',,y. Note that these measures are directed, i.e., in general, I'y,; # I'y,.
This direction captures the fact that it is easier to move from a complex product to a
closely related, but less complex product than vice versa. For instance, if product p; uses
capabilities a; and as, while product p, only uses a; moving from p; to py should be easier

than moving from p, to p;.

3.2.2 Inferring matrix C

To use the genotypic approach for analyzing diversification patterns, we need to further
know the capability endowments of countries. Given that not all countries have equally
good data and that existing data are rarely harmonized across countries, this is a complex
undertaking. However, as shown in [Diodato et al| (2022), we can leverage equation ({1
to infer the capabilities of countries in matrix C from matrices P and M. This equation
states that a country can make a product only if it has all required capabilities. This, in
turn, allows inferring the country’s capability endowments from the products it makes.
For instance, if producing engines requires mechanical engineering know-how, the fact that
a country makes engines implies that this know-how is part of the capability endowments
of that country. More generally, we can infer matrix C' from the production matrix M

and the capability requirements matrix P as follows

Coa =1 [Z MyPoy > o] : (7)

p

where the term Zp M., Py, counts how many products produced by country c use capa-

bility a. If this sum is strictly positive, country ¢ must have capability a.

3.2.3 Genotypic density

The key advantage of inferring C' is that it allows computing the proximity of a country
to a product in a way that is consistent with the underlying framework outlined at the
beginning of Section

Za CCOLP pa ( 8)

Hep = ~~ p -
Y Za Ppa

Eq. measures which share of capabilities that product p requires country c already
owns. Alternatively, we can derive a density metric that factors in how intensively the

different capabilities are used in product p, analogously to eq. @:

fiep = 3 CeaPra. (9)

10



These measures can again be translated into distances by subtracting them from 1. 1— i,
for example, shows which share of capabilities country ¢ would still have to acquire in
order to start producing p. If the cost of acquiring capabilities scales with the intensity
of their use—for instance, when the quality or productivity of a capability is smaller in
an initial learning phase—, then 1 — /i, is more appropriate. This distance reflects how
intensively a product relies on capabilities that country c still lacks. Either distance metric

determines the ease with which country ¢ can enter product p (Diodato et al., 2022]).

The genotypic density metrics account for the full proximity relations between all pairs of
products while the phenotypic density of eq. does not as it sums all pairwise proximities
of product p to any other product p’. Consider, for example, the extreme case where two
products p’ and p” have the exact same capability requirements. Then, if a country
makes product p/, the fact that it also makes p” does not add any information about
its underlying capability endowments. Hence, it does not help determine how close the
country is to a candidate product p. Nevertheless, standard phenotypic density metrics
will suggest that the country is closer to product p when it exports both products, p’ and
p”, than when it exports only one of them. By contrast, the genotypic density accounts

for such duplicities/T]

4 Data

To put the genotypic approach to the test, we study its performance in the canonical
application of ECA to international trade. To do so, we rely on the U.N. Comtrade’s
data on exported commodities between 1992 and 2016 (trade data).lﬂ We add to this
information on occupational profiles of industries from the Occupational Employment
Statistics for year 2002 compiled by the US Bureau of Labor Statistics (BLS data)E

We start by creating the matrix M. To do so, we follow Hidalgo et al.|(2007) and create a
binary matrix that describes which products are significantly present in the export basket
of which countries, based on the RCAs of eq. . That is, we assign to each element M,

of matrix M a value of 1 when RCA,, is greater than one and a value of 0 otherwise.

Next, we need an estimate of matrix P (or of 13) That is, we need a description of which

" Formally, observe from eq. that for the inferred matrix C it makes no difference if a capability
is used in only one or several of a country’s products.

12\We use a version of the dataset that has been processed for the Atlas of Economic Complexity
(https://atlas.cid.harvard.edu/about-data).

130ccupational Employment Statistics (OES) (now Occupational Employment and Wage Statistics).

11
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capabilities are used to produce which products. We will assume that, to a first approx-
imation, these capability requirements data are constant over time and across countries.
That is, we will assume that products are made in the same way across the globe and
across different time periods. This assumption is rather restrictive. However, similar as-
sumptions are typically made about phenotypical product spaces. Moreover, it is easy to
allow for heterogeneity in capability requirements. For instance, one could use a different
matrix for developing countries or allow capability requirements to change over time. To
keep the exposition simple, we will here focus on the simplest case where P and P are

universal, leaving other scenarios for future research.

Capabilities may come in many different forms, such as specialized skills, technological
know-how, infrastructure, or institutions. Here, we limit ourselves to a particularly im-
portant class of capabilities: the capabilities that are embedded in human capital, the
skills and know-how of the workforce needed to work in different occupations. On the one
hand, access to skilled workers fulfills important aspects of capabilities: human expertise
is geographically sticky and different types of expertise are often poor substitutes for one
another. On the other hand, human capital data is often readily available from labor

market surveys or censuses.

Specifically, we construct for each industry occupational employment vectors, based on
information from BLS data. These vectors tell us for each industry in the US, which share
of its wage bill goes to workers in any given occupation. To merge these data with our
trade data, we use a concordance developed by |Pierce and Schott| (2009) that links 6-digit
HS commodity codes to 4-digit NAICS industry codes['] Finally, we drop countries with
fewer than 2 Million inhabitantsF_E] This yields a dataset with 140 countries, 88 industries

and 444 occupations.

Next, we assign a value of 1 to element F,, of matrix P if occupation a is used by industry
p. Similarly, for matrix 13, we set element Ppa equal to the wage-bill share of occupation

a in product p[' We then use these matrices to infer capability endowments of countries,

as described in eq. (7).

Matrix M has been the object of study of the phenotypic approach to ECA. First-order
quantities that can be calculated from this matrix are the ubiquity of products and the

diversity of country’s export baskets. The first rows of Table [I| provide some information

14Gee Diodato et al.| (2022) for further details.

15We use population data from [Feenstra et al.| (2015).

16We also considered employment shares, yielding qualitatively the same results as the ones presented
here. Details are available upon request.
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Table 1: Descriptive statistics for M,, Ppq, and Cg,

Var. N  Mean St.Dev Min/Max

M.,
M, 140 20.73 13.03 min: 1 - Angola
max: 56 - Poland
M, 88 3298 14.22 min: 11 - Commercial and Service Industry Machinery
max: 67 - Other Food

P,

P, 88 126.19 35.73 min: 39 - Leather and Hide Tanning
max: 204 - Navigational and Electromedical Instruments
P, 444 25.01  28.74 min: 1 - Air Traffic Controllers
max: 88 - Bookkeeping, Accounting, and Auditing Clerks

CCCL

C. 140 301.83 54.39 min: 138 - Angola
max: 397 - Netherlands

C, 444  95.17  43.40 min: 12 - Air Traffic Controllers
max: 140 - Accountants and Auditors

Notes: Descriptive statistics are reported for the following variables: M, (country diversity = > M.p);
M, (industry ubiquity = > . Mc); P (industry span = >°, Ppe); P (capability generality = > Pyq);
C. (country completeness =Y C.q); Cq (capability dispersion =Y Ceq).

based on these quantities. The most diversified country is Poland, exporting 56 out
of 88 industries. Angola, on the other hand, is only active in one industry (Oil and Gas
Extraction). When it comes to industries, the least ubiquitous industry is the Commercial
and Service Industry Machinery, with only 11 countries that export it, while the most

ubiquitous industry is Other Food.

The genotypic approach offers two additional matrices that can be studied, P and C.
These matrices describe capability requirements of industries and capability endowments
of countries, respectively. Based on these matrices we can ask, for instance, which indus-
tries have the shortest capability span (Leather and Hide Tanning) and which the longest
(Navigational and Electromedical Instruments). Similarly, we see a large variation in the
completeness of countries’ capability endowments, ranging from Angola, with just 138

occupations to the Netherlands, where industries can access over 400 occupations.

We can also ask how capabilities are distributed across industries and countries. Capabili-
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ties run from highest generality, such as the skills of Accounting Clerks, who are employed
in each of the 88 industries, to the highly specific skills of Bookbinders, who work in
only a single industry. When looking into the dispersion of capabilities across countries
instead, we see that the general skills of Accountants are found in every country, whereas
the expertise of Air Traffic Controllers is much more concentrated.m In Appendix

we provide further rankings along each of these dimensions.ﬂ

The genotypic approach also allows us to study how these quantities relate to one another.
As an example, Fig. [I| shows that the capability span of an industry is strongly and
negatively correlated with the average generality of capabilities. That is, industries that
require many capabilities typically also rely on highly specific capabilities. This suggests
that the development process entails not only the accumulation of more but also of ever

more specialized capabilities.

Figure 1: Industry span and average generality of capabilities in the industry

200
1

150
1

Industry span

100
1

© 3325
2121

®©2122

03187131

50

3161

40 50 60 70 80
Average generality of capabilities

Notes: The y-axis depicts the number of occupations required by an industry, the industry’s capability
span: P, = Y P,,. The x-axis shows the industry’s average generality, i.e., the average number of
industries in which the capability is required.

Similarly, Figure [2| shows how capability bases vary across countries with different levels
of development. Panel a shows how the completeness of a country’s capability base corre-

lates with the country’s GDP per capita. Richer countries tend to have more capabilities,

1"Note that services are not included in our sample. Consequently, Air Traffic Controllers are only
required in the Aerospace Products and Parts industry that is active in only 12 countries.

13The minimums and maximums in Table [1| are often a tie with other countries, products or occupa-
tions. For instance, both Accounting Clerks and Accountants can be found in all 140 countries.
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Figure 2: Capabilities in the development process
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Notes: The x-axis represents GDP per capita (in logs), while the y-axis shows: (a) country completeness
(the revealed number of occupations in the country); (b) the log of the average generality of capabilities
in the country; (c) the logs of average dispersion of capabilities in the country.

consistent with the fact that they also tend to have more diversified export baskets.ﬂ
Furthermore, panel b shows that, on average, richer countries have more specific capa-
bilities and panel ¢ shows that these capabilities are more concentrated in a small set of
countries. Together, these plots suggest that development entails not only accumulating
more but also more specialized capabilities that go into fewer products and are present in

fewer countries.

5 Diversification dynamics

5.1 The occupation-based genotypic product space

Figure [3| visualizes the genotypic product space T as a network. In this network, each
node represents an industry, labelled with an abbreviated name and colored according to

the 3-digit Naics sector to which they belong.

The positioning of nodes deviates from how phenotypic industry spaces are commonly
displayed, which typically use force-directed algorithms. Instead, Figure |3|arranges nodes

along the vertical axis to enhance visual clarity by limiting edge crossings, whereas the

19Given that we infer capabilities from a country’s pattern of specialization and capability requirements
in the US, these two observations are closely related. Although this approach is not that different from
the common assumption in ECA of a universal product space that does not differ across countries. To
assess how well the assumption of a universal capability matrix is we would need comparable data on
input requirements by product. Such an analysis is however beyond the scope of the current paper.
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Figure 3: Genotypic product space, f’pp/
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horizontal axis sorts industries in ascending order of their capability span. That is, in-
dustries that require the smallest number of capabilities are situated to the left (Leather
and Hide Tanning, Footwear, and Other Leather Products) and highly complex industries

that require many capabilities are situated to the right (Navigation and Electromedical

Instruments, Medical Equipment, and Plastic Products).
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Links between nodes represent the proximity between industries as measured by T,
Unlike the phenotypic product space, edges are directed and we here only show arrows
that point right towards more complex industries. To avoid cluttering the visualization,
we only draw edges where f‘pp/ > .98. Finally, to avoid isolated nodes, where needed, we

add the closest incoming connection for each industry.

Interestingly, Fig. [3| suggests that there is a single high-level development path that takes
countries from the most basic industry, Leather and Hide Tanning, to more complex in-
dustries. This path runs via textiles (red) into chemicals (green) and machinery (teal), to
end in the most complex industries with greatest occupational span. Digressions from this
path into mining (light purple), food processing (yellow), or processing of raw materials
industries (dark purple), lead to the periphery of the product space. Despite abstracting
from many of the detailed connections that are pruned in these graphs, it is interesting to
see how the directed nature of pairwise proximities thus highlights well-known and plau-
sible developmental pathways with very different long-run implications for the expected

standards of living in a country.

Different development paths on the genotypic product space are also associated with
different improvements in standards of living. We illustrate this in Fig. [l The layout
of the network is the same as in Fig. [3] However, colors now reflect the average level
of development associated with the industry, measured as the average GDP per capita
of the countries that are active in the industry. Industries typically found in countries
with low GDP per capita (yellow-orange) are mainly in the bottom-left part of the space,
while industries that are more often found in developed countries (red-purple) are mainly

positioned in the top-right part of the space.

How different is the genotypic product space from the phenotypic one? To answer this
question, Table [2| reports the correlation coefficients among the genotypic proximities
of eqs and ([6) on the phenotypic proximity of eq. (3). Both genotypic proximity
metrics correlate significantly with the phenotypic product space. This suggests that oc-
cupational inputs capture important capability requirements that drive a co-exporting
patterns. Conversely, it means that conventional phenotypic approaches capture impor-
tant information regarding the underlying capability structure in terms of occupational
inputs. However, the correlations between phenotypic and genotypic proximities are far
from perfect, suggesting that both measures provide different types of information that

can be exploited in applied work.
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Figure 4: Genotypic product space f‘pp/ and GDP per capita
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now represent the average GDP per capita of countries that are active in the industry: yellow=low GDP
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purple=high GDP (fourth quartile).

5.2 Genotypic density and export diversification

To test the predictive power of the genotypic approach, we study how countries diversify
their exports. To do so, we aggregate our data into 5-year windows: 1992-1996, 1997-
2001, 2002-2006, 2007-2011, 2012-2016. Within each 5-year window ¢, we calculate RC’Aip

using eq. (2). We then define the entry of country ¢ in product p as:
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Table 2: Correlation matrix for ®,,, Ty, and Ty

q)pp/ Fpp’ Fpp/
q)pp/ 1
Fpp/ 0.40 1

Tpp 039 087 1

Notes: The table reports on the correlation coefficients for ®,,, Iy, and T'p,r. All correlations are run
on (882 — 88)/2 = 3828 observations. Since the phenotypic product space is symmetric (®,, = ®prp),
we also symmetrize the genotypic spaces, calculating for every pair (p,p’) the mean of the two directed

genotypic distances in (p,p’) and (p’,p). Tables and in Appendix use the maximum or
minimum genotypic distance in (p,p’) and (p’,p) .

yt, = 1[(RCAY' — RCA!, > 0.5)|RCAL, < 1. (10)

Eq. indicates that a country enters a product, if the RCA makes a jump of 0.5
or higher within a 5-year period. Note that we ignore country-product observations with
RC’AEP >1 and thus only consider jumps for countries that do not yet significantly produce
the product at time ¢. In Appendix we test the robustness of our analysis to different

definitions of yép. Next, we calculate for every country-product-time observation both

t
cp

phenotypic (wf,) and genotypic densities (ul,, fil,,) as described in Section

Figure [5| shows how the probability of entry changes with density. To do so, we first cal-

culate percentile ranks for our density measures. Next, we create a sliding window across

t

these percentiles that is centered on wy),

respectively ﬂip and spans from 20 percentiles
below to 20 percentiles above these values. Finally, we calculate in each window the av-
erage of yﬁp, the relative frequency at which we observe a country entering a product for

the associated density window.

For both measures, the probability of entry runs from 1-2% at low densities to 5-7% at
high densities. In this sense, the two measures perform about equally well when it comes
to predicting entry events. However, whereas the entry probability rises monotonically
with increasing values of genotypic density, it plateaus about mid-way for the phenotypic
density. This suggests that the genotypic density ranks products more consistently across
its distribution when it comes to the likelihood of countries’ diversifying into them. One
possible explanation for this is that the genotypic density successfully filters out redundant

information from closely related products, whereas the phenotypic density does not.

Table |3| corroborates that phenotypic and genotypic approaches have similar global pre-
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Figure 5: Probability of entry and density
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Notes: The x-axis represents percentiles of wzp and ﬂ’ép; the y-axis the probability of appearance for the
percentile, which we compute as the average of yﬁp in an interval of £20 percentiles around the x-axis

value. The plot for phenotypic density (wﬁp) is drawn with grey dots, while the one for genotypic density

(fit,,) with red hollow circles. The lines are LOWESS smooths of the plots.

dictive validity. It shows results from the following regression:

yZp = 51 lOg pr + 52 log ﬂ’ip + 6ip + 62p7 (11)

where 87, is a column-specific vector of fixed effects as indicated in the last row of Table
ranging from simple product (p), country (c) and period (t) fixed effects to composite
product-period and country-period fixed effects. The first rows of the table show univari-
ate regressions, including only one of the two density measures. The bottom rows show

results when both density types enter the regression simultaneously.

Regardless of the included fixed effects, the univariate regressions indicate that phenotypic
and genotypic density have similar predictive performance. Furthermore, the multivariate
regressions show that the two metrics remain significant also when they are included
jointly in the regression. This means that phenotypic and genotypic regressions do not

capture exactly the same Variation.@

20To check the robustness of these results, we run a number of regressions (see Appendix , with
variations in the definition of the appearance variable yzp. Furthermore, |Abadie et al.| (2023) highlights
that—in the absence of a sampling problem—the clustered standard errors could overestimate the true
variance. We, thus, report robust standard errors in the main text and cluster-robust ones in the appendix.
Especially in the case of the effect of genotypic density, we only find minor differences compared to robust
standard errors.
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Table 3: Probability of entry and density
(1) 2) (3) (4) (5) (6)

logw!,  0.016%F% 0.076*F* 0.014%F% 0.007%% 0.008%%* 0,052%**

(0.001)  (0.003)  (0.001)  (0.003)  (0.003)  (0.004)
Adj. R* 0.0l 0.06 0.02 0.05 0.06 0.08
N 37563 37563 37563 37563 37563 37563

logit,  0.101%F%  0.052%F%  0.124%F%  0.040%F% 0.040%F% 0.061%**

(0.006)  (0.008)  (0.007)  (0.011)  (0.011)  (0.012)
Adj. B2 0.00 0.05 0.02 0.05 0.06 0.07
N 37570 37570 37570 37570 37570 37570

logw!,  0.014%F%  0.076*%* 0.009%%*  0.005%  0.006** 0.050%**
(0.001)  (0.003)  (0.001)  (0.003)  (0.003)  (0.004)
logfit,  0.042%FF  0.056%F* 0.065%F* 0.035%F* 0.034%F* (,042%F
(0.008)  (0.008)  (0.011)  (0.012)  (0.012)  (0.012)

Adj. R? 0.01 0.07 0.02 0.05 0.06 0.08
N 37563 37563 37563 37563 37563 37563
Controls ct pt c,p c,p,t ct,pt

Notes: The table reports three sets of regressions following Equation the first, including only pheno-
typic density (log wﬁp); the second, only genotypic proximity (log ﬂf:p ); the third, both. The dependent
variable follows the definition in Equation Robust standard errors in parentheses. Significance is
indicated by *(10%), **(5%), and ***(1%).

5.3 Beyond density

A key advantage of the genotypic approach is that it not only allows assessing which
industries are close to a country’s current export basket, but also which capabilities the
country would need to acquire to enter this industry. To illustrate the empirical value of
this additional information, we add three explanatory variables to our appearance regres-
sion. First, we add reqip, the average years of education for the occupations that country
¢ is missing to start making product p, using educational requirements by occupations
as provided by the U.S. Bureau of Labor Statistics. Second, we add edu, the country’s
average years of education from Barro and Lee (2013)). Third, we add the interaction of

reqip and edu’. This yields the following regression model:

Yo, = Brlog fity, + B2 log reql, + B3 log edu’. + B4log reqy, X log edu’ + o, +e, (12
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Table 4: Capability-enhanced appearance regressions

(1) (2) (3) (4) () (6)

log fit, 0.106%%*%  0.049%%F  0.136%%*  0.033%F*  0.034%%*  0.056%+*
(0.007)  (0.009)  (0.009)  (0.012)  (0.012)  (0.013)
log req’, L0.5RTFRE 0,634 FF  _0.223%F  _0.305%FF -(0.304%FF  _0.235%*
(0.084)  (0.086)  (0.100)  (0.102)  (0.102)  (0.102)
log edu, S0.680%FF  0.000  -0.352FFF  _0.436%F*  -0.362%F*

(0.098)  (0.000)  (0.113)  (0.116)  (0.117)
log reql, x log edul  0.248%%F  0.261%%F  0.122%%F (. 151%%k (. 151%%k  (,122%%
(0.037)  (0.038)  (0.043)  (0.044)  (0.044)  (0.044)

Adj. R? 0.01 0.05 0.03 0.06 0.06 0.07
N 31923 31923 31923 31923 31923 31923
Controls ct pt c,p c,p,t ct,pt

Notes: The table reports the regression described in Equation the regressors are genotypic proximity
(log [ﬂ;p ), the (weighted) average years of education required in missing occupations (log 7“6(]219)7 the
country’s average years of education (log edui), and the interaction of the latter two terms. The dependent

variable follows the definition in Equation Robust standard errors in parentheses. Significance is
indicated by *(10%), **(5%), and ***(1%).

Table [4] reports results. We focus here on the interaction between educational require-
ments for the potential diversification event and the educational endowments of the coun-
try. Different columns correspond to models with different types of fixed effects. Across
specifications, the interaction effect is positive and highly significant, suggesting a ro-
bust complementarity between the nature of the missing capabilities and a country’s
endowments@ This finding strongly resonates with [Schetter| (2022) who shows how such
complementarities provide a flexible microfoundation for the Economic Complexity Index

(Hidalgo and Hausmann| 2009) that is in line with key concepts in the related literature.

6 Discussion

The genotypic approach opens up a number of new avenues in economic complexity anal-
ysis. Economic development in ECA, but also in the capability approach in evolutionary
economics, is often regarded as a process of accumulating capabilities that allow a country
to enter into more complex industries. By revealing the capability bases of countries, the

genotypic approach allows us to study a country’s capability trajectory directly.

21Robustness checks are reported in Appendix Including a control for phenotypic density or
changing the measure of education we use does not change results.
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To provide a concrete example, consider the economic development process of Vietnam
between 1992 and 2016. At the start of this period, Vietnam was active in 14 of industries,
such as Footwear Manufacturing, Apparel Manufacturing, and Furniture Manufacturing.
Over the next three decades, Vietnam entered a dozen new industries, including Commu-
nications Equipment Manufacturing, Audio and Video Equipment Manufacturing, Com-
puter and Peripheral Equipment Manufacturing and Semiconductor and Other Electronic
Component Manufacturing. According to our analysis, this expansion required acquiring
about 40 new capabilities, including the expertise of Computer Hardware Engineers, Ma-
terials Scientists, FElectronics Engineers, Electromechanical Equipment Assemblers, and

Data Communications Analysts.

However, the potential of the genotypic approach goes well beyond such descriptive anal-
ysis. Below, we sketch how the genotypic approach can be used in policy making and to

develop a new research agenda within ECA.

6.1 Implications for policy

ECA has contributed to policy frameworks for country-level and regional economic de-
velopment. It has been applied by policy makers in multilateral organizations such as
the World Bank (Bank| 2019) and the European Union, where it offers analytic insights
for smart specialization (Boschma et al.| [2021; |Diodato et al., [2023b]), one of the world’s
largest place-based policy actions. Our genotypic analysis can augment such policy frame-

works in several ways.

The genotypic approach goes beyond measures of proximity or density and complexity
rankings, offering insights into actual capability requirements and capability endowments.
In practical terms, such insights can be leveraged to determine the feasibility of diversifica-
tion paths in new ways that directly ask which capabilities are missing and which actors or
economies may be the best sources to acquire them from. This information moves policy
prescriptions from targeting specific products to investing in specific capabilities. This,
in turn, limits the risks of capture by vested interests of actors that operate in specific
product markets and instead turns the focus to targeted provision of public goods. In this
sense, the genotypic approach may also support Lin's (2011) NSE framework by helping

identify which hard and soft infrastructure a country should aim to develop.

Furthermore, although the genotypic approach does not have a clear edge in predicting
diversification paths over phenotypic approaches, the linear mapping between genotypic

density and entry probabilities of Fig. [5| suggests that it does more accurately map the
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relative risk ratios of diversification over a broader range of densities. This is useful
because it can help a country better assess trade-offs between feasibility and desirability

of entering a new product at different points along the density spectrum.

The genotypic approach also has implications for long-term economic development. So
far, we have focused on the ability of the product space to predict diversification patterns
in the short- to medium-run. However, the directed nature of the genotypic product
space reveals how different choices can lead to different long-run developmental options,
as well as suggest good ways to sequence the acquisition of capabilities along such paths.
Moreover, it draws attention to a number of potential poverty traps (Hidalgo et al., 2007}
Hausmann and Hidalgol 2011} Tacchella et al., 2016; Diodato et al., 2022). Explicitly
accounting for the capabilities allows the genotypic approach to provide additional insights

that cannot be derived at the phenotypic level.

For instance, the genotypic approach allows to test the empirical relevance of the so-called
quiescence trap (Hausmann and Hidalgo, 2011} Tacchella et al., [2016). The quiescence
trap refers to the hypothesis that the combinatorial dynamics that ECA assumes for
economic production may lock a country into periods of developmental stasis (Hausmann
and Hidalgo, 2011)). This follows directly from the production framework assumed in
ECA, according to which countries only produce the products for which they have all
required capabilities. As countries acquire new capabilities, they can combine them with
their existing capabilities. This leads to new capability combinations, some of which are
associated with viable products. However, the value of a new capability depends on the
number of capabilities a country already has: one extra capability leads to many more
new combinations in highly developed economies that already dispose of many capabilities

than in less developed countries with only few existing capabilities.

The genotypic approach allows taking these ideas to the data. To do so, Fig. [0] plots for
each country its number of capabilities on the horizontal and its number of industries on
the vertical axis. The relationship between the number of capabilities a country has and
the number of industries in which it is active exhibits the hypothesized convexity needed
for quiescence traps. In particular, the graph shows that at low levels of diversification,
i.e., among countries with ~ 270 capabilities or less, industrial diversification grows only
little with the number of capabilities. For instance Angola has 138 capabilities and 1
industry, while Qatar has 214 capabilities and 5 industries. As we move to countries with
more capabilities, the number of industries rises rapidly: Albania has 298 capabilities but

already 21 industries, while Germany has 387 capabilities and 47 industries. This suggests
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Figure 6: Quiescence trap
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Notes: Scatter plot of the number of industries (M..) against number of revealed capabilities (occupations,
C.) per country. The graph refers to the year 2002 and uses an RC'A threshold of 1. The trend line is a
LOWESS smooth.

that the number of industries that a country can develop only rises rapidly at later stages

of development.

The genotypic approach can also deepen our understanding of other poverty traps. For
instance, |[Hidalgo et al. (2007)) already showed that countries specialized in products at the
periphery of the product space tend to have relatively few diversification opportunities,
suggesting the existence of a periphery trap. In Appendix [C.I] we discuss how the geno-
typic product space can be used to simulate diversification opportunities and show that
the capability requirements of Apparel accessories are more conducive of development

than those of Metal ore mining, for example.

Finally, a related, but distinct, poverty trap is discussed in Appendix Here, we
argue that diversification might “congest” capabilities: entering new industries increases
the opportunity cost for hiring labor for further diversification moves. Consequently,
diversifying into new industries has two opposing effects: (i) it allows the country to
accumulate new capabilities, thus making it easier to further diversify; (ii) it raises the
cost of existing capabilities, making it more difficult to further diversify. Depending on
the balance of these two effects, the order of entry into new industries matters. Although
this entry trap may, in principle, also be studied at the phenotypic level, the genotypic
approach’s attention to opportunity costs of the non-tradeable inputs of production offers

a more natural framework to do so (see also Diodato et al., [2022).

25



6.2 A new research agenda

The analysis so far has provided a sketch of what a genotypic approach to economic
complexity may look like and how it can be used in development research and policy. To
do so, we studied the framework in a highly stylized setting and there are many ways in
which this approach can be refined and extended. Moreover, going down to the level of

capabilities opens up a range of new questions and opportunities for further analysis.

First, our focus on human capital inputs strongly has limited the set of capabilities we
have considered. The advantage of doing so is that it kept the exposition compact. More-
over, human capital related capabilities are likely to fulfill important characteristics that
are assumed about capabilities in the stylized model of production we use: human capital
is valuable, relatively specific, mostly non-ubiquitous and hard to move or access from
outside the country where it resides. Moreover, many other types of capabilities have
components that are embedded in the skills of workers. For instance, physical equipment
and technological expertise require workers that know how to use this equipment and
apply the expertise. However, future research could focus on various other types of capa-
bilities that can be mapped using the methodology described in this paper. For example,
nontraded intermediates, such as specialized business services, may fit our definition of
capabilities as well. Information on which industries rely on which business services is
readily available in the supply and use tables used in input-output analysis, suggesting
that such information can be added relatively easily to the P and P matrices. Another
example is the technological areas in which industries conduct R&D as revealed in patent
data.

Second, even if we limit ourselves to human-capital related capabilities, our analysis can
be augmented. After all, occupations are themselves bundles of tasks and some pairs of
occupations are more similar to one another than others (Gathmann and Schénberg, 2010;
Neftke et al., 2024)). Therefore, although we have avoided double-counting occupations, we
may still double-count capabilities in terms of the underlying skills, knowledge and abilities
of workers in these occupations. Datasets that describe the content of occupations such as
O*NET in the US may help remedy such problems, expressing capability requirements of
industries in terms of the skills they rely on through the human capital of their workers.
This type of analysis may also help connect the genotypic approach in ECA to the task-
based approach in labor economics (Acemoglu and Autor, 2011)), as well as to research
about the future of work (e.g., Alabdulkareem et al., 2018).

Third, an interesting set of questions arises from relaxing the assumption of a universal
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capability requirements matrix. To a first approximation, this may be justified: although
car firms may differ in their exact technologies and human capital, it is plausible that
capability requirements of car industries in different countries are more similar to one
another than they are to the capability mix required by mining companies. Nevertheless,
the mix of occupations that a given industry employs may differ between industrialized and
less developed economies. In this case, the P matrix differ across (groups of) countries.
Similarly, capability requirements may change. Such variations of the P matrix can be
easily accommodated. For instance, we may use different versions of P for advanced
and developing economies. Furthermore, future research could explore how to extend our

framework to allow for countries to choose between different production technologies.

Fourth, we have tested the genotypic analysis in ECA’s original context of international
trade. However, economic complexity has had a large influence on the field of economic
geography and in particular of evolutionary economic geography. Therefore, studying the
industrial diversification dynamics of cities and regions could offer a particularly promising

alternative application.

Fifth, although the acquisition of new capabilities has played a prominent role in our
paper, we have remained silent on how countries develop new capabilities. An expanding
literature has argued that capabilities often diffuse from places where they are already well
established. This literature has identified several channels for such capability diffusion,
from migration (e.g., Bahar and Rapoport, 2018; Diodato et al., 2023a), to FDI (e.g.,
Crescenzi et al., 2022) and business travel (Coscia et al., 2020)). By revealing changes in
the capability mix of countries, the genotypic approach offers new, more direct, ways of

analyzing these channels and their importance.

Sixth, our work does not focus on maximizing predictive validity, as in [Tacchella et al.
(2023)). However, the genotypic predictions can be improved by fine-tuning e.g. when to
treat a capability as present in a country or how different capabilities are weighted. For
instance, one can use information on the value or difficulty of acquiring a capability. It
may also be possible to calibrate these weights such that they maximize the predictive
validity of genotypic density metrics in diversification dynamics. Such an analysis would

provide valuable information on how important different capabilities are.

Seventh, although we have not fully pursued this, the genotypic approach also directly
suggests genotypic complexity metrics. This could be as simple as counting the capabilities
of a country. Comparing the predictive validity of such genotypic complexity measures to

their phenotypic counterparts in predictions of GDP per capita growth may shed further
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light on the relative merits of each approach. Incidentally, this exercise may also offer a

different way to tune the aforementioned capability weights.

Finally, a number of ECA-inspired combinatorial models of economic growth have been
proposed (Hausmann and Hidalgo, 2011} Fink et al., |2017; van Dam and Frenken) |2020)).
By making capabilities measurable, the genotypic approach offers ways to test these mod-

els more directly.

In sum, although the genotypic approach to ECA we have sketched has shown promising
results, much work remains. To facilitate this work, we make the underlying Python code
as well as the estimated capability bases of countries and their changes over time available

for download.

7 Conclusions

Economic complexity analysis has advanced our knowledge of diversification and struc-
tural transformation processes. The strength of this literature is that it showed how
detailed, highly disaggregated information on an economy’s industrial structure can be
analyzed to map stylized development trajectories that are predictive of future diver-
sification, without resorting to a small set of factors of production or coarse stages of
development. So far, this literature has used the notion of capabilities primarily as a
narrative that underlies methods to derive product similarities and complexity rankings.
Here, we propose that by taking the capabilities narrative more literally, we can arrive
at more informative descriptions of countries’ capability bases. This offers new ways
to analyze the costs countries face when trying to enter new products and how they can
achieve this. We have termed this approach genotypic, using capabilities as akin to encod-
ing a DNA of products and countries, where different combinations of capabilities result
in different products. This stands in contrast to more traditional economic complexity
analyses, which we have termed phenotypic, because they group and rank products and
countries based on observed outcomes alone, without direct reference to the underlying

capability structure.

Although our genotypic approach uses an arguably crude approximation of how economies
produce products, it emphasizes important constraints and opportunities in economic de-
velopment that have first-order consequences for how economies move along their develop-
ment trajectories. Moreover, the proposed genotypic approach complements conventional

product space analyses and helps deepen our understanding of underlying mechanisms in
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various ways. First and foremost, directly building on the underlying capability structure
opens up the black box of what drives co-location and related diversification. Second, the
focus on capabilities allows deriving proximity and density metrics that are, in principle,
consistent with the underlying drivers of technological similarity. This is not, in gen-
eral, the case for phenotypic analyses—see Appendix [D.I] Third, the genotypic approach
suggests that the proximity between products is directed: diversifying from textiles to air-
planes is not the same as from airplanes to textiles. We have shown that this asymmetry
has important short-run and long-run consequences for economic development. Lastly,
building on the capability structure opens up new avenues that are impossible to explore
at the phenotypic level: Co-location patterns can indicate which products are likely to be
in a country’s adjacent possible, but they cannot tell us what it would take for a country
to actually start making these products. The genotypic approach allows filling this gap,

opening up new avenues for research and approaches to policy making.
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Appendices

A Supplementary descriptives

A.1 Rankings of countries, products, and occupations

Table A.1: Countries with fewer industries

# Ind. ISO3  Country name

1 AGO Angola

1 IRQ  TIraq

2 KWT Kuwait

3 DZA  Algeria

3 LBR Liberia

3 LBY Libya

3 SAU  Saudi Arabia
4 MLI  Mali

4 MRT  Mauritania

4 OMN Oman

4 TKM Turkmenistan
5 COG Congo

) IRN Iran

5 QAT  Qatar

5) YEM Yemen

Notes: The table displays the bottom ranking of M, (country diversity = Zp M,).
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Table A.2: Countries with most industries

# Ind. ISO3 Country name

56 POL Poland

51 ITA  TItaly

50 ESP  Spain

48 AUT Austria

47 DEU Germany

46 SVN  Slovenia

45 CZE  Czechia

45 SCG  Serbia and Montenegro
44 BGR Bulgaria

44 DNK Denmark

44 FRA France

43 HRV  Croatia

42 SVK  Slovakia

41 BEL  Belgium-Luxembourg
40 BLR Belarus

Notes: The table displays the top ranking of M. (country diversity = Zp Mep).

Table A.3: Industries in fewer countries

# Countries Naics Industry name

11 3333  Commercial and Service Industry Machinery

11 3327  Screws, Nuts, and Bolts

12 3364  Aerospace Products and Parts

13 3339  Other General Purpose Machinery

13 3344  Semiconductors and Other Electronic Components
15 3336 Engine, Turbine, and Power Transmission Equipment
15 3332  Industrial Machinery

15 3345 Navigational and Electromedical Instruments

16 3343  Audio and Video Equipment

16 3342  Communications Equipment

16 3351  Electric Lighting Equipment

16 3369  Other Transportation Equipment

16 3346  Magnetic and Optical Media

17 3341  Computer and Peripheral Equipment

17 3325  Hardware

Notes: The table displays the bottom ranking of M, (industry ubiquity = > _M,,).
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Table A.4: Industries in most countries

# Countries Naics Industry name

67 3119  Other Food

64 3113  Sugar and Confectionery

58 3116  Animal Slaughtering and Processing
58 3273  Cement and Concrete Products

58 3161  Leather and Hide Tanning

57 3114 Fruit and Vegetable Preserving

56 3112 Grain and Oilseed Milling

o6 2123  Nonmetallic Mineral Mining

B} 3149  Other Textile Product Mills

95 3241  Petroleum and Coal Products

54 3152  Cut and Sew Apparel

54 3253  Pesticide, Fertilizer, Agricultural Chemicals
53 3211  Sawmills and Wood Preservation

52 3219  Other Wood Products

49 3122 Tobacco

Notes: The table displays the top ranking of M), (industry ubiquity = >, Mcp).

Table A.5: Industries requiring fewest occupations

# Occ. Naics Industry name

39 3161  Leather and Hide Tanning

48 3162  Footwear

51 3169  Other Leather Products

59 3361  Motor Vehicle

62 3159  Apparel Accessories

62 3365  Railroad Rolling Stock

63 3122  Tobacco

68 3274  Lime and Gypsum Products

68 3117  Seafood Preparation and Packaging
72 3151  Apparel Knitting Mills

74 3131  Fiber, Yarn, and Thread Mills

76 2122 Metal Ore Mining

89 2121 Coal Mining

92 3325  Hardware

92 3379  Other Furniture Related Products

Notes: The table displays the bottom ranking of P, (industry span = Ppa).
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Table A.6: Industries requiring most occupations

# Occ. Naics Industry name

204
199
196
191
186
180
176
175
172
171
167
162
161
159
157

3345  Navigational and Electromedical Instruments
3391  Medical Equipment and Supplies

3261  Plastics Products

3329  Other Fabricated Metal Products

3363  Motor Vehicle Parts

3339 Other General Purpose Machinery

3254  Pharmaceutical and Medicine

3344  Semiconductors and Other Electronic Components
3364  Aerospace Products and Parts

3323  Architectural and Structural Metals

3231  Printing and Support Activities

3219  Other Wood Products

3331  Agriculture, Construction, and Mining Machinery
3251  Basic Chemicals

3333  Commercial and Service Industry Machinery

Notes: The table displays the top ranking of P, (industry span = Pp,).

Table A.7: Occupations required by fewest industries

# Ind. Soc Occupation name

1 53-2021 Air Traffic Controllers

1 53-2022 Airfield Operations Specialists

1 19-2021 Atmospheric and Space Scientists

1 29-1121 Audiologists

1 51-5012 Bookbinders

1 27-4012 Broadcast Technicians

1 27-4031 Camera Operators, Television, Video, and Motion Picture
1 49-9061 Camera and Photographic Equipment Repairers
1 35-1011 Chefs and Head Cooks

1 39-9011 Child Care Workers

1 35-2014 Cooks, Restaurant

1 31-9091 Dental Assistants

1 29-2021 Dental Hygienists

1 51-9081 Dental Laboratory Technicians

1 47-5011 Derrick Operators, Oil and Gas

Notes: The table displays the bottom ranking of P, (capability generality = Zp Ppa).
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Table A.8: Occupations required by most industries

# Ind. Soc Occupation name

88 43-3031 Bookkeeping, Accounting, and Auditing Clerks

88 51-1011 First-Line Supervisors/Managers of Production and Operating Workers

88 43-9061 Office Clerks, General

88 43-5071 Shipping, Receiving, and Traffic Clerks

87 13-2011  Accountants and Auditors

87 43-6011 Executive Secretaries and Administrative Assistants

87 11-3031 Financial Managers

87 43-1011 First-Line Supervisors/Managers of Office and Administrative Support Workers
87 11-1021  General and Operations Managers

87 51-9198 Helpers—Production Workers

87 51-9061 Inspectors, Testers, Sorters, Samplers, and Weighers

87 37-2011 Janitors and Cleaners, Except Maids and Housekeeping Cleaners

87 43-5061 Production, Planning, and Expediting Clerks

87 41-4012 Sales Representatives, Wholesale and Manufacturing, Except Technical Products
87 43-6014 Secretaries, Except Legal, Medical, and Executive

Notes: The table displays the top ranking of P, (capability generality = Zp Ppa).

Table A.9: Countries endowed with fewest occupations

# Occ. 1SO3  Country name
138 AGO  Angola

138 IRQ  Iraq

181 BGD Bangladesh
182 MRT  Mauritania
185 LBR Liberia

186 KWT Kuwait

193 DZA  Algeria

193 LBY Libya

198 MLI  Mali

213 OMN Oman

213 SAU  Saudi Arabia
213 TKM  Turkmenistan
214 QAT  Qatar

226 KHM Cambodia
233 COG Congo

Notes: The table displays the bottom ranking of C. (country completeness = Ceq).
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Table A.10: Countries endowed with most occupations

# Occ. ISO3 Country name
397 NLD Netherlands
396 DNK Denmark

391 ESP  Spain

387 BEL Belgium-Luxembourg
387 DEU Germany

382 HRV  Croatia

381 AUT  Austria

380 USA USA

379 FRA France

377 CAN Canada

376 AFG Afghanistan
374 ITA Italy

374 SWE Sweden

372 POL  Poland

370 SVN  Slovenia

Notes: The table displays the top ranking of C. (country completeness = " Ccq).

Table A.11: Occupations present in fewest countries

# Countries Soc Country name

12 53-2021 Air Traffic Controllers

12 53-2022 Airfield Operations Specialists

12 27-4012 Broadcast Technicians

12 41-3041 Travel Agents

13 47-4021 Elevator Installers and Repairers

15 19-2021 Atmospheric and Space Scientists

15 29-1121 Audiologists

15 49-9061 Camera and Photographic Equipment Repairers
15 15-2091 Mathematical Technicians

15 19-2012 Physicists

15 53-6051 Transportation Inspectors

15 49-9064 Watch Repairers

16 49-2097 Electronic Home Entertainment Equipment Installers and Repairers
16 49-3052 Motorcycle Mechanics

16 27-2012  Producers and Directors

Notes: The table displays the bottom ranking of C, (capability dispersion = )" _C¢,).
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Table A.12: Occupations present in most countries

# Countries Soc

Country name

140
140
140
140
140
140
140
140
140
140
140
140
140
140
140

13-2011
11-3011
49-3023
43-3021
43-3031
49-3031
17-2041
19-2031
11-1011
53-7061
13-1072
43-9011
15-1021
15-1041
15-1051

Accountants and Auditors

Administrative Services Managers

Automotive Service Technicians and Mechanics
Billing and Posting Clerks and Machine Operators
Bookkeeping, Accounting, and Auditing Clerks

Bus and Truck Mechanics and Diesel Engine Specialists
Chemical Engineers

Chemists

Chief Executives

Cleaners of Vehicles and Equipment

Compensation, Benefits, and Job Analysis Specialists
Computer Operators

Computer Programmers

Computer Support Specialists

Computer Systems Analysts

Notes: The table displays the top ranking of C, (capability dispersion =} C.,).
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B Robustness of Empirics
B.1 Robustness of product space regressions

Table B.1: Cross-regressions of ®,,, I'y,, and fpp/ (max distance within pair)

(I)pp’ Fpp’ Fpp’
(I)pp’ 1
I,y 037 1

I'pp’ 038 0.64 1

Notes: The table reports on the correlation coefficients for ®,,,, I',,/, and f‘pp/. All correlations are run

on (882 —88)/2 = 3828 observations. To compute the values of I' and T, we take the maximum genotypic
distance between pp’ and p'p.

Table B.2: Cross-regressions of ®,,,, I',,/, and f‘pp/ (min distance within pair)

(I)pp’ Fpp’ Fpp’
<I>pp/ 1
Fpp/ 0.26 1

Tpp 035 075 1

Notes: The table reports on the correlation coefficients for ®,,,, I',,/, and f‘pp/. All correlations are run
on (88% —88)/2 = 3828 observations. To compute the values of ' and I', we take the minimum genotypic
distance between pp’ and p'p.

B.2 Robustness of appearance regressions
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Table B.3: Different definition of appearance (1)

6 ) 6) @ () (©)
logwﬁp 0.015%**  0.065*** 0.012*** 0.009*** 0.010%** 0.047***
(0.001) (0.003) (0.001) (0.002) (0.002) (0.004)
Adj. R? 0.01 0.05 0.02 0.04 0.04 0.06
N 37563 37563 37563 37563 37563 37563
log[zip 0.082%**  0.040*** 0.103*** (0.034*** (0.034%** (.048%**
(0.006) (0.007) (0.006) (0.010) (0.010) (0.011)
Adj. R? 0.00 0.04 0.02 0.04 0.04 0.06
N 37570 37570 37570 37570 37570 37570
logwf;p 0.013*** 0.065%** 0.010%** 0.008*** (.008%** (.045%**
(0.001) (0.003) (0.001) (0.003) (0.003) (0.004)
log/jip 0.026%**  0.043%%* 0.042*%**  0.025%*  0.025**  (0.031%**
(0.007) (0.007) (0.010) (0.010) (0.010) (0.011)
Adj. R? 0.01 0.05 0.02 0.04 0.04 0.06
N 37563 37563 37563 37563 37563 37563
Controls ct pt c,p c,p,t ct,pt

Notes: The table reports three sets of regressions following Equation the first, including only pheno-
typic density (log wﬁp); the second, only genotypic proximity (log ﬂf:p ); the third, both. The dependent
variable is defined as yf, = 1[(RCALFY — RCAL, > 0.5) N RCALT > 1|RCA!, < 1]. Robust standard

errors in parentheses. Significance is indicated by *(10%), **(5%), and ***(1%).
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Table B.4: Different definition of appearance (2)

6 ) 6) @ () (©)
logwﬁp 0.028%**  0.091*** 0.026*** 0.022*** 0.022%** 0.080***
(0.001) (0.003) (0.001) (0.003) (0.003) (0.005)
Adj. R? 0.02 0.05 0.03 0.04 0.05 0.06
N 37563 37563 37563 37563 37563 37563
log[zip 0.144%**  0.077***  0.173*** 0.052*** 0.052%**  0.066%**
(0.007) (0.008) (0.008) (0.012) (0.012) (0.013)
Adj. R? 0.01 0.04 0.02 0.04 0.04 0.06
N 37570 37570 37570 37570 37570 37570
logwf;p 0.027%F% 0.092%%*  0.026%**  0.020*** 0.021%*%* (0.079***
(0.001) (0.003) (0.001) (0.003) (0.003) (0.005)
log/jip 0.029%#*  (.081*** 0.008 0.029%*%  0.028%*  0.037***
(0.007) (0.008) (0.012) (0.012) (0.012) (0.013)
Adj. R? 0.02 0.05 0.03 0.04 0.05 0.06
N 37563 37563 37563 37563 37563 37563
Controls ct pt c,p c,p,t ct,pt

Notes: The table reports three sets of regressions following Equation the first, including only phe-
notypic density (log wf:p); the second, only genotypic proximity (log ﬂzp ); the third, both. The de-
pendent variable is defined as y!, = 1{RCALFY > 1|RCA!, < 1]. Robust standard errors in parenthe-
ses.Significance is indicated by *(10%), **(5%), and ***(1%).
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Table B.5: Two-way clustered standard errors.

0 ®) 6) @ () (©)
logwﬁp 0.016%** 0.076*** 0.014*** 0.007 0.008  0.052%**
(0.002) (0.012) (0.002) (0.006)  (0.006) (0.014)
Adj. R? 0.01 0.06 0.02 0.05 0.06 0.08
N 37563 37563 37563 37563 37563 37563
log[ﬂ;p 0.1017%%*  (0.052%*F* (0.124%**  0.040*** 0.040** 0.061***
(0.018) (0.018) (0.017) (0.015)  (0.015)  (0.017)
Adj. R? 0.00 0.05 0.02 0.05 0.06 0.07
N 37570 37570 37570 37570 37570 37570
longp 0.014%F%  0.076***  0.009*** 0.005 0.006  0.050%**
(0.002) (0.012) (0.002) (0.006)  (0.006)  (0.014)
logﬂf;p 0.042%*  0.056*** 0.065***  0.035%* 0.034** (0.042%***
(0.016) (0.015) (0.019) (0.014)  (0.013)  (0.015)
Adj. R? 0.01 0.07 0.02 0.05 0.06 0.08
N 37563 37563 37563 37563 37563 37563
Controls ct pt c,p c,p,t ct,pt

Notes: The table reports three sets of regressions following Equation the first, including only pheno-
typic density (log wﬁp); the second, only genotypic proximity (log ﬂf:p ); the third, both. The dependent
variable follows the definition in Equation Standard errors clustered at country and product level.
Significance is indicated by *(10%), **(5%), and ***(1%).
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Table B.6: Capability-enhanced appearance regressions (including density)

(1) (2) (3) (4) (5) (6)

log it 0.036%%%  0.053%FF  0.047%F%  0.025%F  0.026%%  0.034%%*
(0.008)  (0.009)  (0.012)  (0.012)  (0.012)  (0.013)
reg', S0.519%FF L0.175FF  0.235%F  _0.209%FF  0.206%**  -0.161
(0.084)  (0.086)  (0.101)  (0.103)  (0.103)  (0.102)
edu’ 0,615 S0.358%FF 04267 -0.351FH*
(0.097) (0.113)  (0.116)  (0.117)

regt, x edul  0.219%F%  0.084%%  (.121%FF  0.148%F%  (.147FFF  0,082%
(0.037)  (0.038)  (0.043)  (0.044)  (0.044)  (0.044)

log !, 0.014%%%  0.076%%*  0.009%%*  0.005%  0.006%*  0.050%**
(0.001)  (0.003)  (0.001)  (0.003)  (0.003)  (0.004)

Adj. R? 0.02 0.07 0.03 0.06 0.06 0.08
N 31920 31920 31920 31920 31920 31920
Controls ct pt c,p c,p,t ct,pt

Notes: The table reports the regression described in Equation the regressors are genotypic proximity
(log fi, ), the (weighted) average years of education necessary for missing occupations (reg’,, in logs),
the country’s average years of education (edui7 also in logs), the interaction term, and density (log wf:p
). The dependent variable follows the definition in Equation Robust standard errors in parentheses.

Significance is indicated by *(10%), **(5%), and ***(1%).

Table B.7: Capability-enhanced appearance regressions (alternative measurement)

(1) (2) (3) (4) (5) (6)

log fit, 0.100%FF  0.051%%%  0.124%FF (.032%%%  .034%FF  0.056%+*
(0.007)  (0.009)  (0.009)  (0.012)  (0.012)  (0.013)
reg’, -0.049%FF  _0.054%** 0015  -0.003  -0.003  0.004
(0.006)  (0.006)  (0.010)  (0.010)  (0.010)  (0.010)
edu’ 0.008%** -0.000  0.010%  0.031%%*
(0.003) (0.003)  (0.005)  (0.007)

regt, x edu’  0.021%F%  0.021%%%  0.013%F%  0.016%¥% 0.015%%% 0.014%%*
(0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)

Adj. R? 0.01 0.06 0.03 0.06 0.06 0.07
N 31835 31835 31835 31835 31835 31835
Controls ct pt c,p c,p,t ct,pt

Notes: The table reports the regression described in Equation the regressors are genotypic proximity
(log [Lip ), the (weighted) share of missing occupations that require tertiary education (requ, in logs),

the country’s share of population with tertiary education (edui, also in logs), and the interaction term.
The dependent variable follows the definition in Equation Robust standard errors in parentheses.

Significance is indicated by *(10%), **(5%), and ***(1%).
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C Additional analysis on the role of capabilities in
the development process

C.1 Periphery Trap

Industries differ not only in the number and composition of capabilities they require but
consequently also in their position among the network of industries. In turn, this matters
for a country’s prospects to grow out of an industry: More central industries provide many
diversification opportunities into nearby industries while such opportunities are scarce
when growing out of more peripheral industries. In turn, this implies that ceteris paribus
countries that are located in the periphery of the product space have worse diversification
prospects. This observation is not new and it is known at least since Hidalgo et al.| (2007)).
But our genotypic analysis allows for a novel perspective on the empirical relevance of

these arguments as we now explain.

Figure shows for a selection of 6 industries the distribution of distances of a country
from the remaining industries if that country was only in the respective industry. The
mean distance is indicated by a red vertical line. The industries are: the industry with the
fewest occupations (3161 — leather and hide tanning); two other industries in the textile
cluster (3162 — footwear manufacturing; and 3159 — apparel accessories manufacturing);
tobacco manufacturing (3122), which leads on the lower-right diversification path in Fig-
ure[3} fruit and vegetable preserving (3114), which is a downstream industry of agriculture
and in the food cluster in Figure[3} and a mining industry (2122 — metal ore mining). All
of these industries are rather peripheral in the product space but still, there are important
differences in terms of how connected they are: On average, fruit and vegetable preserv-
ing (3114), which is also the industry that is most diversified in terms of its occupational
inputs, is connected best, while metal ore mining (2122) has the lowest connectivity with
the network of industries. What is more, this industry has very few industries at low
distances, which is also the case for tobacco manufacturing (3122). In turn, this might
hinder a gradual diversification were a country sequentially enters industries and moves
closer to the network of industries. After all, it may be more important for a country’s
diversification prospects to have some stepping stones in reach which allow building up

new capabilities than being initially closer on average to the network of industries.

To take this point home, we consider a simple probabilistic model of diversification. Specif-
ically, suppose that a country is able to enter a product p if its profits from doing so exceed

the fixed costs of entry. Suppose further that a country’s profit potential in an industry
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Figure C.1: Periphery trap: Initial distances

(a) 3161 — Leather & hide (b) 3162 — Footwear manuf. (c) 3159 — Apparel accessories
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(d) 3122 — Tobacco manuf.  (e) 3114 — Fruit & veg. pres. (f) 2122 — Metal ore mining

Notes: The figure shows for 6 different industries as indicated in the titles of the respective panels a
histogram of distances from all remaining industries for a hypothetical country that is only present in
the respective industry. The vertical red line indicates the mean distance.

declines (i) in its distance from that industry and (ii) in the country’s diversification. The
latter reflects that countries become richer as they diversify which increases the opportu-
nity cost for hiring labor in a new industry. The former reflects e.g. a lower productivity in
an initial learning phase for new occupations. Because different occupations are comple-
mentary, this gives rise to an exponential decline of a country’s productivity and, hence,
profits in an industry with respect to its distance from that industry. In summary, a

country c can profitably enter industry p if
,U/:p S K1 IOg (.fcplc"':S + K?) ) (Cl)

where f,, denotes the fixed cost of entry in product p as detailed momentarily, /. the
diversification of country ¢ (i.e., the number of industries it currently has). Further
details on Condition and how it can reflect entry in richer models are provided
in Appendix Here we simply note that x; and ks are parameters that capture 2
fundamental forces: (i) how sensitive a country’s productivity in an industry is to its

distance from that industry (k7). (ii) how difficult diversification is initially (k2). kK3
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governs the size of the fixed costs.

To shed light on the implications of a country’s initial position in the product space for
its development prospects, we use Condition (C.1)). Specifically, starting in turn from
each of the six industries considered in Figure [C.I] we simulate 500 development paths,
where at each step we draw fixed costs of entry f., from a uniform distribution on [0, 1]
for all industries not present in the country and then have the country enter the nearest
industry among the ones satisfying Condition . If no such industry exists, further
entry is not feasible, the diversification stops, and we store the number of industries the
country grew into before it got stuck in this iteration. In our baseline calibration, we
choose k1 = —.1 and ko = .08, which implies that among the simulations starting from
industry 3161 (leather and hide tanning), the share of countries that started to diversify
and their diversification at the end of the process are broadly in line with the data@

Figure plots for each of the six industries a histogram of diversifications at the end of
the simulated development path across the 500 iterations. Robustness checks are provided
in Appendix [C.3] The figure reveals striking differences across the industries: First,
countries have lower prospect to grow out of industries 3122 and 2122 when compared to
industry 3161 even though these industries are much more diversified in terms of their
occupational inputs and industry 3122 also is closer on average to the rest of the network—
see Figure[C.1] Interestingly, the poor diversification prospects when starting from 2122—
see panel (f)—points to a novel type of resource curse that does not operate through higher
wages—the classical argument—but through the peripheral location of metal ore mining
in the product space. Second, countries are much more likely to grow out of industry 3162
than out of industry 3122 even though they have about the same average distance from the
network of industries, highlighting the importance of nearby stepping stones that can lead
on a pathway to prosperity. Third, 3114, which is by far closest to the network of industries
and uses the most occupations nevertheless leads to similar levels of diversification when
compared to industries from the textile cluster—3162 and 3159: When compared to these
industries, the risk of getting stuck at very early stages of diversification is somewhat
lower in industry 3114. On the contrary, when successfully diversifying, the development
process tends to stop at somewhat lower levels of diversification. This is a reflection of
the more peripheral structure of the natural development path out of 3114—see Figure [3]

We will get back to this point when discussing entry traps next.

228pecifically, among the set of countries with less than 20 industries in 1992 to 1996 in our sample,
30% diversified their export by at least 5 industries and 50% compared to their baseline diversification.
Moreover, the most diversified countries in our sample have around 40 — 50 industries—see Figure @(b)
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Figure C.2: Periphery trap: Simulated development paths

(a) 3161 — Leather & hide (b) 3162 — Footwear manuf. (c) 3159 — Apparel accessories
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(d) 3122 — Tobacco manuf.  (e) 3114 — Fruit & veg. pres. (f) 2122 — Metal ore mining
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Notes: This figure summarizes the simulation as detailed in the text. Each panel shows a histogram of
the number of successful diversification jumps across 10’000 simulated development paths starting from
the respective industry as indicated in the title of the panel. The vertical red line indicates the mean.

C.2 Entry Trap

An issue closely related to but distinct from the periphery trap is an entry trap. The
periphery trap can arise if a country is located in the periphery of the product space at
early stages of development. As opposed to that, an entry trap can arise at later stages
of development and it is a consequence of the two opposing effects of entry: On the one
hand, economic diversification makes available additional capabilities and, hence, brings
a country closer to its missing industries. On the other, diversification leads to growth
and, hence, higher wages, which lowers profits from entering in new industries. An entry

trap can occur if the latter effect dominates.

We can use our previous arguments to illustrate the potential importance of entry traps.
Figure zooms into Figure [6]c) at the range of 64 to 67 industries. To this figure,
we have added the right-hand side of Condition using our parameter values from
before, but holding constant the fixed cost f at .059 to make entry into different industries
directly comparable. With 65 industries, the closest still missing industry is 3365. This is
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Figure C.3: Entry trap
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Notes: Simulated environment of growth by diversification. The horizontal axis represents time. On the
vertical axis we represent the two sides of the inequality in ??: the solid grey line is the right-hand side -
thus representing the number of industries present in country c. The left-hand side is plotted with dots.
Entry is possible only when the dot is above the solid line (highlighted with red diamonds). While in
Figure we assume that the simulated country enters the closest industry, here we show other feasible
paths, one of which leads to stagnation. The labels indicate the 4-digit Naics code of the added industry.
The industries involved are: 3113 - Sugar and Confectionery; 3114 - Fruit and Vegetable Preserving; 3118
- Bakeries and Tortilla; 3119 - Other Food; 3122 - Tobacco.

the one considered in Figure @(c) Given our parameter choices, there is, however, another
industry 3231 that the country might grow into. Entry is often not a top-down policy
decision, but the result of firms successfully organizing themselves to become competitive
in something that is new to them. It is, thus, entirely possible that the firms manag-
ing to do so faster are not the ones entering the industry that is closest. Interestingly,
in our illustrative example that would be beneficial for growth as there are additional

diversification opportunities when entering 3231 in step 66 but not when entering 3365.

We can also use our simulation from before to shed light on potential bottlenecks in the
network of industries. To that end, we summarize across all 3000 iterations—500 for each
starting industry in Figure and for every industry how likely a country is to keep on
diversifying upon entering an industry. Table shows the top and bottom 10 industries.
Interestingly, the top 10—all of which (almost) always allowed further diversification
upon entry—are manufacturing industries at or close to the core of the product space.
Conversely, the bottom 10 industries are more peripheral and either rather advanced (3391

and 3364) or in the periphery of the product space (e.g. 3231, 2122, 3241)—see Figure
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Table C.1: Top and bottom 10 industries by prospects of further diversification

NAICS Description Share
3322  Cutlery & handtool manufacturing 1.000
3352  Household appliance manufacturing 1.000
3325  Hardware manufacturing 1.000
3321  Forging & stamping 1.000
3359  Other electr. equipm. & component manufacturing 1.000
3327  Screws, nuts, and bolts 0.999
3336  Engine, turbine, and power transmission equipment 0.998
3334  Ventilation, hearing, air conditioning 0.998
3361  Motor vehicle manufacturing 0.997
3332  Industrial machinery manufacturing 0.996
3365  Railroad rolling stock manufacturing 0.893
3366  Ship & boat building 0.891
3254  Pharmaceutical and medicine manufacturing 0.887
2122 Metal ore mining 0.884
3231  Printing support activities 0.872
3364  Aerospace product & parts manuf. 0.872
3262  Rubber product manufacturing 0.870
3241  Petroleum & coal products manuf. 0.865
3391  Medical equipment manufacturing 0.855
2111 Oil & gas extraction 0.781

Notes: This table shows for our previous simulation the top and bottom 5 industries in terms of the
following ratio:

# iterations entered industry and continued to diversify
# iterations entered industry '

The ratio is computed over all 3000 iterations—500 for each panel in Figure

2122 and 3241 are extractive industries or their downstream industries, which further
supports our previous argument that the peripheral location of these industries in our
genotypic product space can give rise to a novel type of resource curse. These industries
require skills that are rather specific and hence, are of little use for future diversification
into new industries. Note that this is different from the conventional view on the resource
curse. Loosely speaking, the resource curse is about the quantity of production factors
being tied up in extractive industries, which lowers competitiveness in other industries.
We treat all industries symmetric in this sense. By contrast, in our simulations, these

industries can hinder future diversification because of the type of skills they require.
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C.3 Robustness of Simulation in Section |C.1

In this appendix, we present three robustness checks for Figure [C.2] Figure [C.4] presents
simulations where—instead of jumping to the nearest feasible industry—the country
jumps to a randomly selected feasible industry. Figure uses distances based on
employment shares as opposed to wage-bill shares. Lastly, Figure considers a case
where the fixed cost of entry increase sub-linearly with the industrial diversification, that
is, where we modify Equation as follows

,Uzp S K1 10g (fcp(lc)’553 + /<v2) . (02)

Figure C.4: Periphery trap: Simulated development paths—robustness: random entry

(a) 3161 — Leather & hide  (b) 3162 — Footwear manuf. (c) 3159 — Apparel accessories

3000 — T T T T T 800

800 r

700 700

2500
600 600

2000

500 500

1500 400 400

300 300

1000
200 200
500

I 100
0 0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

(d) 3122 — Tobacco manuf.  (e) 3114 — Fruit & veg. pres. (f) 2122 — Metal ore mining
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Notes: This figure provides a robustness check for Figure where at each step the country enters a
randomly selected feasible industry. The figures are based on 5’000 iterations each.

D Technical Details

D.1 Relation Between Phenotypic and Genotypic Measures

In this appendix we show (i) that the phenotypic measures entail important information

about proximity and density in a capabilities-based world but that (ii) they do not in
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Figure C.5: Periphery trap: Simulated development paths—robustness: employment
shares

(a) 3161 — Leather & hide (b) 3162 — Footwear manuf. (c) 3159 — Apparel accessories
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Notes: This figure provides a robustness check for Figure where distances have been computed based
on employment shares instead of wage-bill shares. The figures are based on 5’000 iterations each.

general correctly measure technological proximities.

Considering proximities between pairs of products first, it is well known that the pheno-
typic proximity in Equation can be re-expressed as a minimum conditional probability
L Zc M, My
o max(}_, Mep, 32, M)
= min {Pr[p'|p]; Pr[p[p']} .

)

Pr[p|p] denotes the probability that a country exports product p conditional on it ex-
porting product p’. Interestingly, this measure does indeed entail important information
on the capability overlap between pairs of products, at least if capability endowments
are random. In particular, suppose that all countries successfully export all products for

which they have all the required capabilities. Suppose further that a country ¢ has any

given capability with probability 7. € (0, 1), analogous to |[Hausmann and Hidalgo| (2011]).

Then, the unconditional probability that the country can make a product p that requires
n, capabilities is
Pr[My, =1] = (r.)"™.
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Figure C.6: Periphery trap: Simulated development paths—robustness: Equation (C.2))

(a) 3161 — Leather & hide (b) 3162 — Footwear manuf. (c) 3159 — Apparel accessories
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Notes: This figure provides a robustness check for Figure using Equation (C.2). The figures are
based on 5’000 iterations each.

Conditional on making p’, we know that a country has all the capabilities needed to make
p’. Hence, conditional on exporting p’, the probability that country ¢ can also make
product p is

Pr[Me, = 1My = 1] = (re)" ",

where n,,; denotes the number of capabilities that p requires but p’ not. The key point
to note is that this probability is increasing in the capability overlap between p and
p’. This means that if all products require the same number of capabilities—and, thus,
Pr[p'|p] = Pr[p|p’]—the phenotypic proximity is increasing in the genotypic proximity.
More generally, this suggests that the phenotypic proximity entails important information
about the capability overlap between pairs of products, albeit it typically does not measure

this overlap correctly.

Additional problems arise when it comes to density as this requires aggregating pairwise
distances between products into a distance between a country and a product, i.e., a basket
of products and a single product. In general, this requires accounting for the fact that

the products in a country’s export basket differ in their respective capability overlaps.

26



The genotypic approach does so by backing out country capability endowments first.

The phenotypic approach instead does not so in general, unless strong restrictions are

imposed ]

D.2 Further details on Condition ((C.1))

In this appendix, we show how Condition (C.1]) captures in a simple way the key entry
dynamics in [Diodato et al.| (2022)).

Diodato et al. (2022) consider a Small Open Economy (SOE) that grows by diversify-

1o where Ig is the

ing its export basket, such that the wage rate is proportional to Ig
number of industries in the SOE and o a parameter capturing the gains from industrial
diversiﬁcation.ﬁ Entering a new industry involves a fixed cost in terms of labor, i.e., this
fixed cost is proportional to the wage rate. Entry further requires training workers in all
occupations that are new to the SOE, and the productivity of these workers is lowered
by a factor A < 1 in an initial learning period. Upon entry, a firm makes profits that are
thus decreasing in its distance g, from that industry and, quite intuitively, in the wage

rate. Taken together, firms in the SOE find it profitable to enter industry p if
* q70—1 1
AHsp — >

where 7 is a constant, 0 — 1 governs how sensitive profits are to the SOE’s distance from
industry p, and fg, are the fixed costs of entry.lﬂ Taking logs and re-arranging terms, we

get

P | To~nt
MSp = (o_ _ 1) log(A) R1 Og fSp S )
—— K3
K1

where the inequality gets reversed because log(A) < 0. Condition (C.1) generalizes this
by introducing an additional additive term for the fixed cost, ?—; such that total fixed cost

of entry are

K2
+ =,
fSp IS

23The easiest way of seeing this is by considering two products A and B with the same capability
requirements. Then, phenotypic approaches will generally ascribe a country greater density for a third
product C' if it has both products A and B compared to when it has only one of them, while conditional
on having A adding B does not add to a country’s capability endowments and vice versa.

24They consider an |Armington (1969)-type model where each country is equipped with a distinct
variety in each industry and where these varieties are then aggregated in a CES consumption aggregator
to industry bundles. In such case o is the constant elasticity of substitution in consumption.

Z5This condition exactly maps onto Condition (B.2) in Diodato et al.| (2022) if the fixed cost of entry
and the learning cost have a small effect on the equilibrium wage in the SOE in the entry period—see
their Equation (13).
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This term governs how hard the initial jump on a pathway to prosperity is.
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