Estimating the drivers of urban economic complexity and their connection to economic performance

Estimating the capabilities, or inputs of production, that drive and constrain the economic development of urban areas has remained a challenging goal. We posit that capabilities are instantiated in the complexity and sophistication of urban activities, the know-how of individual workers, and the city-wide collective know-how. We derive a model that indicates how the value of these three quantities can be inferred from the probability that an individual in a city is employed in a given urban activity. We illustrate how to estimate empirically these variables using data on employment across industries and metropolitan statistical areas in the USA. We then show how the functional form of the probability function derived from our theory is statistically superior when compared with competing alternative models, and that it explains well-known results in the urban scaling and economic complexity literature. Finally, we show how the quantities are associated with metrics of economic performance, suggesting our theory can provide testable implications for why some cities are more prosperous than others.

The Node Vector Distance Problem in Complex Networks

We describe a problem in complex networks we call the Node Vector Distance (NVD) problem, and we survey algorithms currently able to address it. Complex networks are a useful tool to map a non-trivial set of relationships among connected entities, or nodes. An agent—e.g., a disease—can occupy multiple nodes at the same time and can spread through the edges. The node vector distance problem is to estimate the distance traveled by the agent between two moments in time. This is closely related to the Optimal Transportation Problem (OTP), which has received attention in fields such as computer vision. OTP solutions can be used to solve the node vector distance problem, but they are not the only valid approaches. Here, we examine four classes of solutions, showing their differences and similarities both on synthetic networks and real world network data. The NVD problem has a much wider applicability than computer vision, being related to problems in economics, epidemiology, viral marketing, and sociology, to cite a few. We show how solutions to the NVD problem have a wide range of applications, and we provide a roadmap to general and computationally tractable solutions. We have implemented all methods presented in this article in a publicly available open source library, which can be used for result replication.

How Industry-Related Capabilities Affect Export Possibilities

The central question we will explore in this document is: Can we anticipate the opportunities that Colombian cities have to export specific products based on their existing productive capabilities?

In the following pages, we report a collection of results, analyses, and advances in which we assess how industry-related capabilities affect export possibilities. Our final goal will be to create a single measure that synthesizes all the knowledge and existing information about the productive capabilities of each city, both “horizontal” and “vertical”, and that quantifies how competitive a city can be if it aims at exporting a given product it does not yet export.

This document is broken in two main efforts: First, we want to understand the “mechanics” of diversification processes. And second, we want to be able to provide recommendations of products that are not produced in cities, but should be. The first effort requires a multitude of analyses, each trying to describe the characteristics of firms, of cities, and of the mechanisms that expand the export baskets of places. The second effort requires the development of a statistical model that is accurate when predicting the appearances of products in cities. These two efforts, explaining and predicting, are complementary, but different.

Explanations that lack the power of accurately predicting the future are useless in practice; predictions of phenomena for which we lack understanding are dangerous. But together they provide a unified story that can inform policy decisions.

The Path to Labor Formality: Urban Agglomeration and the Emergence of Complex Industries

Labor informality, associated with low productivity and lack of access to social security services, dogs developing countries around the world. Rates of labor (in)formality, however, vary widely within countries. This paper presents a new stylized fact, namely the systematic positive relationship between the rate of labor formality and the working age population in cities. We hypothesize that this phenomenon occurs through the emergence of complex economic activities: as cities become larger, labor is allocated into increasingly complex industries as firms combine complementary capabilities derived from a more diverse pool of workers. Using data from Colombia, we use a network-based model to show that the technological proximity (derived from worker transitions between industry pairs) of current industries in a city to potential new complex industries governs the growth of the formal sector in the city. The mechanism proposed has robust strong predictive power, and fares better than alternative explanations of (in)formality.

Explaining the prevalence, scaling and variance of urban phenomena

The prevalence of many urban phenomena changes systematically with population size 1 . We propose a theory that unifies models of economic complexity 2,3 and cultural evolution 4 to derive urban scaling. The theory accounts for the difference in scaling exponents and average prevalence across phenomena, as well as the difference in the variance within phenomena across cities of similar size. The central ideas are that a number of necessary complementary factors must be simultaneously present for a phenomenon to occur, and that the diversity of factors is logarithmically related to population size. The model reveals that phenomena that require more factors will be less prevalent, scale more superlinearly and show larger variance across cities of similar size. The theory applies to data on education, employment, innovation, disease and crime, and it entails the ability to predict the prevalence of a phenomenon across cities, given information about the prevalence in a single city.

Related Content: The Urban Theory of Everything

Harvard Magazine: Recipes for Thriving Cities

Last updated on 12/10/2021

New Insights About Wage Inequality in Colombia

This paper presents a descriptive analysis of wage inequality in Colombia by cities and industries and attempts to evaluate the impact of the inequality of industries on inequality of cities. Using the 2010-2014 Colombian Social Security data, we calculate the gini coefficient for cities and industries and draw comparisons between their distributions. Our results show that while cities are unequal in similar ways, industries differ widely on how unequal they can be with ginis. Moreover, industrial structure plays a significant role to determine city inequality. Industrial framework proves to be a key element in this area for researches and policymakers.

Explaining the Prevalence, Scaling and Variance of Urban Phenomena

The prevalence of many urban phenomena changes systematically with population size1. We propose a theory that unifies models of economic complexity2, 3 and cultural evolution4 to derive urban scaling. The theory accounts for the difference in scaling exponents and average prevalence across phenomena, as well as the difference in the variance within phenomena across cities of similar size. The central ideas are that a number of necessary complementary factors must be simultaneously present for a phenomenon to occur, and that the diversity of factors is logarithmically related to population size. The model reveals that phenomena that require more factors will be less prevalent, scale more superlinearly and show larger variance across cities of similar size. The theory applies to data on education, employment, innovation, disease and crime, and it entails the ability to predict the prevalence of a phenomenon across cities, given information about the prevalence in a single city.

Notes:

This paper is published in the journal, Nature: Human Behavior.

Last updated on 12/10/2021